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ABSTRACT

Testability issues concerning the need for including
Design for Testability (DFT) techniques in VLSI designs are
discussed. Types of fault models, the use of fault simulation
and the DFT techniques of Scan Path and Built-in Test are
described. An engineering methodology that uses the Genesil
Silicon Compiler to produce a VLSI design, DFT CHIP, which
utilizes the DFT Scan Path technique is presented. Included
are the procedures for using Genesil's simulation, timing
analysis and automatic test generation features. The steps
taken to fabricate the DFT_CHIP design through MOSIS are
discussed. The methodology used to test the fabricated
DFT_CHIP design on the Tektronix DAS 9100 tester is described.
Appendix A and Appendix B provide copies of the Genesil check
functions written for use during simulation on the DFT_CHIP
design. Appendix C specifies the Genesil timing information
for the DFT_CHIP design. Appendix D lists the conversion
program which translates Genesil produced test vector files to

the file format used during testing on the Tektronix tester.

S Azcesion For \)
S NTIS CRA&! |
- DilC TAb
s ’,/ U aonounod
) Justhcanon
By .
Dotib. te !
iii T
Dit




TABLE OF CONTENTS

I. INTRODUCTION . . . ¢ @ &« o« o o o o o o s o« o«
A. BACKGROUND . . . + ¢ + ¢ ¢ & o o o & «
1. Testability Issues . . . . . . . . .+ . .
2. Fault Models . . . . ¢ ¢« « o ¢« v & « « .
3. Fault Simulation . . . . . . . . . .
B. THESIS OVERVIEW . . . . . .« . . . .
IT. DESIGN FOR TESTABILITY TECHNIQUES
A. BACKGROUND . . . . . . . .
B. COMPARISON OF THE SCAN PATH AND BUILT-IN TEST
TECHNIQUES . . . . . « .« . .
1. Scan Path . . . . . . . . . .
2. Built-in Test . . . . . . . . o . .
3. Comparative Advantages and Disadvantages

a. Scan Path Advantages

b. Scan Path Disadvantages

c. Built-in Test Advantages . . . .
d. Built-in Test Disadvantages

C. GENESIL IMPLEMENTATION OF THE SCAN PATH
TECHNIQUE . . . . ¢ ¢« ¢« o o ¢ o« o o o o o« o &

IIT. DESIGN FOR TESTABILITY IMPLEMENTATION METHODOLOGY
A, FUNCTIONAL DESCRIPTION
1. Input Registers . . . . . .
2. XNOR Register

3. Combiners/Testability Latches . . . . . .

iv

15

17

17

18

18

23

29

29

31

31

32

33

40

41

42

45

47




4., AddAer . . . + v+ e 4 s e s s 4 e e« « . . B1

5. Output . . . . . . . . . ¢ 0 . . . . . . . B

B. DESIGN CRITERIA, DECISIONS AND TECHNIQUES . . . 53
1. Dgsign Decisions and Techniques to Minimize

Size . . . . . e o . . .+ « . 55

2. Additional Design Decisions and Techniques 65

C. SIMULATION AND TIMING ANALYSIS . . < 71
1. Simulation . . . . . . . . . . . . . 71
2. Timing Analysis . . . . . . . . 79
D. AUTOMATIC TEST GENERATION AND FAULT COVERAGE . 82
Iv. FABRICATION AND TESTING . . . . 100
A. FABRICATION METHODOLOGY . . . 100
B. TESTING METHODOLOGY . . . . . « .« . . . . . 106

1. Tes@ing Methodology for the DFT_CFKFIP
Design . . ¢« ¢ ¢ v ¢ « 4 e e e . . . 109
2. Test Results for the DFT_CHIP Design . . 120
V. CONCLUSIONS . . . . .+ .« . .« . 125
A. SUMMARY . . . . . . 125
B. RECOMMENDATIONS . . . . « ¢« ¢« « +« « = 128
APPENDIX A. BASIC CHECK FUNCTIONS . . . 129
APPENDIX B. HIGH LEVEL CHECK FUNCTIONS 136
APPENDIX C. TIMING ANALYSIS REPORTS 143
APPENDIX D. TEST VECTOR CONVERSION PROGRAM 150
LIST OF REFERENCES 161
INITIAL DISTRIBUTION LIST . . . . .+ .+ . 163




I. INTRODUCTION

A. BACKGROUND
1. Testability Issues

Testability of VLSI (Very Large Scale Integrated)
circuits deals with the issue of accomplishing measurements on
a circuit to insure that it performs in the manner in which it
was intended to perform. For a VLSI circuit to produce the
"proper" or expected outputs several factors must be looked
at. First, the circuit logic must be designed correctly to
produce the desired outputs for a given set of inputs.
Secondly, the chip must be physically fabricated properly so
as to correctly implement that logic for which it was de-
signed. Finally, the circuit should retain correct function-
ality over time by having stable operating characteristics.
If proper engineering techniques were used to formulate the
logic design for the circuits of a VLSI chip, the major
testability issue centers on the ability to completely
evaluate the physical functioning of circuits/gates internal
to the chip. Design for Testability (DFT) is an approach to
designing VLSI chips/circuits to better ensure that individual
internal components can be accessed for testing purposes.

With future improvements of VLSI technology, the
complexity (in terms of the number of components, gates, or

circuits) of VLSI chips will continue to increase. As this




complexity increases, the degree of difficulty experienced
during the testing of VLSI circuits will increase correspond-
ingly. "Conventional" testing relies on adding additional
mechanical means for testing such as extra input/output (I/0)
pins for more test points, improving test fixtures, using
additional testing probe points with a "bed of nails" etc.,
and suffers by being able to conduct testing only when the
part is removed from the system it operates in [Ref. 1:p. 48].
In contrast, DFT relies on the addition of logic circuits
internal to the chip to help facilitate testing and circuit
accessibility, and DFT techniques can be used to design
systems which allow in-system testing of parts [Ref. 1:p. 81].

Conventional testing methods have become inadequate
primarily due to their inability to access internal circuit
components and their need to feed signals through a test
interface involving many I/0 pins [Ref. 1l:p. 57]. As VLSI
chips become more dense they require extra pins for normal I/O
operations thus leaving fewer pins which can be used for
testing purposes. Also, with the increased miniaturization of
VLSI chip circuitry, the number of pads available to connect
to I/0 pins has not kept pace with increases in the number of
transistors within a chip [Ref. 1l:p. 59]. When chip periphery
lengths grow by al the area available for transistors grows by
(a1)? but the space available for pads grows by only 4al. If
this transistor growth requires more I/0 pins and pad growth

can not Keep up, the pins available for testing will decrease.




The need for considering the inclusion of DFT tech-
niques during chip design can be predicated largely on one
factor: cost [Ref. 2:p. 100]. The need to insure reliability
in a chip is self-evident and only testing can help insure
reliability. If the cost of testing a complex VLSI chip is
too great, an otherwise desirable logic design might not be
produced. Although VLSI per circuit fabrication costs have
been decreasing, the per circuit testing costs have increased
as a percentage of the total chip cost as chips have become
more complex [Ref. 1l:p. 15]. Additionally, the costs associ-
ated with a user finding/using defective chips mandates that
adequate testing be done prior to chips being distributed for
use. To both lower the costs of performing testing and to
allow a degree of testing in otherwise conventional testing
prohibitive circuits, the inclusion of DFT criteria has
emerged as a growing requirement in VLSI design.

2. Fault Models

The goal of DFT is to find ways to make testing
easier, less costly, and more efficient to implement. By
adding additional circuitry to the chip, DFT adds to the
observability and controllability of the system. Control.a-
bility can be defined as the degree to which a node internal
to a circuit can be set to a given logic level [Ref 3:p. 97].
In contrast, observability refers to the ability to observe
the logic level of a given internal node via an output from

the design [Ref. 3:p. 97]. The degree to which a chip can be




tested is highly dependant upon its degree of controllability
and observability. By increasing the controllability and
observability of a circuit, the testability, in terms of
finding out if the circuit is "fault free", is increased.

A circuit is said to contain faults if it exhibits
failures which cause deviations from the specified performance
behavior [Ref 4:p. 1]. Two major classes of faults are design
faults which manifest themselves as improper connections
within the VLSI circuit and physical circuit defect faults
such as those caused by manufacturing problems or wear out
during chip operation [Ref. 4:p. 1]. Physical defects include
open contacts, broken lines, faulty transistors, and shorts
between parts of the circuit [Ref. 4:p. 1]. Photolithography
errors during the manufacturing of VLSI circuits, such as
alignment problems, mask failures, or unintended or missing
connections, are major contributors to these physical defects
[Ref. 5:p. 693)]. Wear out failures can occur due to such
things as metal starting to corrode or metal migration due to
the presence of high current densities [Ref. 5:p. 695]. Fault
models are used as a means for describing what the effects are
of a particular type of circuit physical failure.

Fault models can include modeling faults down to
‘'physical defects at the individual transistor/switch 1level,
but often fault models only consider faults down to the logic
gate level. The advantage to using a logic gate level fault

model is that this type of model can represent faults for many




different technologies. The stuck-at fault model is this type
of logic gate level model and as such is the lowest level of
modeling that is technology independent.[Ref. 6:p. 40)

The stuck-at fault model 1is based on assuming that
physical defects causing faults will result in input or output
lines of logic gates being permanently stuck-at logic level 0
or 1. As an example of how a stuck—-at fault could be mani-
fested in a CMOS circuit consider the inverter of Figure 1.1.
If the line at point A is inadvertently shorted to ground then
the output of the inverter will be stuck-at 1 (S-A-1) no
matter what the input to the inverter is. If the line at
point B is inadvertently broken then the circuit will produce
the correct logic level 1 output when a logic level 0 is the
input and the p-type transistor conducts. However, if a logic
level 1 is the next input after a logic level 0 input the
n-type transistor is not turned on because of the broken line.
Instead, the output will remain at logic level 1 for a period
of time which depends on leakage currents. If the inverter is
included in a circuit which receives a high speed stream of
inputs consisting of both logic level 1's and 0's then the
time for the leakage current dissipation may be longer than
the time between input< of logic level 1's. If so, the output
will appear as a permanent S-A-1 fault.[Ref 7:pp. 7, 8]

To illustrate how to test for stuck-at faults, the AND
gate of Figure 1.2 is considered. If this gate has a S-A-1

fault at the gate's A input as shown, the gate will always
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Figure 1.1 CMOS Inverter Stuck-at Faults After Ref.
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check for a S—A-1 fault at input A
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Figure 1.2 AND Gate Stuck-at Fault Testing
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perceive line A to be at logic level 1, even if a logic level
0 is actually applied. To test for this S-A-1 fault for line
A, note that the A,B input line pairs (0,0), (1,0), and (1,1)
will all produce correct outputs on line C. Therefnre, these
inputs can not produce a result which indicates the presence
of the S-A-1 fault. However, if input (0,1) is used the
output should be logic level 0 but will instead be 1logic
level 1 due to the S-A-1 fault at input A. Thus, the input
pattern (0,1) is a test for a line A S-A-1 fault.

Each logic gate having a total combinaticn of n
input/output lines has a possibility of 2n different single
(one at a time) stuck-at faults (i.e., each input or output
line can exhibit either a S-A-1 or a S-~A-0 fault). One

problem in testing is to design test vector inputs which can

detect these 2n stuck-at faults. The AND gate of Figure 1.3
shows that certain input patterns can determine the presence
of more than one stuck-at fault. As an example, an A to D
input line pattern of (1,0,1,1) which produces an output of
logic level 1 means that either input line B is S-A-1 or
output line E is S-A-1. As shown in Figure 1.3, only five
test vectors are needed to completely test the proper func-
tioning of this gate. Note that a test vector which produces
an erroneous result will not be able to specify which stuck-at
fault exists since each test vector covers more than one
stuck-at fault case. 1Instead, the results from the applica-

tion of the test vector will only indicate that the gate has
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Input Faults Pattern to Detect Fault
ABCD
A S-A-0 1111
A S-A-1 0111
B S-A-0 1111
B S-A-1 1011
C S-A-0 1111
C S-A-1 1101
D S-A-0 1111
D S-A-1 1110

Output Faults Pattern to Detect Fault
I ABCD

E S-A-0 1111 L

E S-A-1 any input combination

that coqtains one or
more 0 inputs
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Completely Test Gate

ABCD

1
0
1
1
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Figure 1.3 Test Vectors Needed for Stuck-at Fault Detection




a fault in it. However, this information alone is often all
that is sought since then the VLSI circuit is known to be bad.
Although basically technology independent and widely
used, the stuck-at fault model does have several problems.
Among these are:

1. Only a single stuck-at fault is assumed to be present at
a time in the VLSI circuit for this model type. Since
more than one stuck-at fault could actually be present
in a circuit, the stuck-at fault model does not accu-
rately represent the true range of conditions possible

[Ref. 8:p. 97].

2. The stuck-at fault model does not take into account high
speed "AC" or "dynamic" type faults [Ref. 1l:p. 403].

3. Certain types of faults such as bridging faults, involv-
ing shorts between lines, and floating-gate type faults
can not be completely handled by the stuck-at fault
model [Ref. 1l:p. 404].

To overcome these problems other models such as the bridging
fault model (a gate level model), and the stuck-open and
stuck-on fault models (both transistor level models) can be
used [Ref. 4:pp. 10, 11]. Today however, the single stuck-at
fault model is still the model which is used most widely for
testability and fault simulation purposes [Ref 3:p. 95]. The
work done for this thesis is based on using a single stuck-at
fault model.
3. Fault Simulation

In order to test a VLSI circuit a set of test vectors
must be applied to the circuit and then the output results
must be compared to the desired results (normally obtained
from logic simulation). The purpose of fault simulation is to

determine, for a specific set of test vectors, which faults in

9




the circuit are detected. Fault simulation normally involves
a fault simulator introducing single stuck-at faults, one at
a time, into gate level models of the circuit [Ref. 6:p. 37].
By then applying the test vectors to the simulated circuit,
the fault simulator determines if the fault was or was not
tested/detected. The result of fault simulation is a determi-
nation of the percentage of faults that were tested/detected
with a given set of test vectors out of the total number of
faults introduced by the fault simulator. Just because a
fault is not detected does not mean that it is untestable;
rather it just means that the given set of test vectors used
could not detect it [Ref. 8:p. 97]. Fault coverage is the
total number of faults, expressed as a percentage, that can be
detected for a given set of test vectors as compared to the
total number of all possible faults {Ref. 1l:p. 335].

It is important to make a distinction between the two
reasons and types of testing that is performed on a chip.
Functional testing is used to validate the operational
characteristics of a chip. Functional test vectors are
applied to the chip and the outputs are observed to determine
if they provide the results desired for a given input or
sequence of inputs. 1In contrast, a set of test vectors which
‘"achieve maximum fault coverage is applied to a chip to
determine if faults arising from the fabrication process are
present. Therefore, the maximum fault coverage test vector

set is not intended to check for proper design functionality

10




of the chip, but rather to check for manufacturing errors
which result in faults that would preclude the chip from
performing in its intended manner. Although technically
possible, a set of maximum coverage test vectors is not
normally used to check chip functionality because of the
extreme complexity of determining the "proper" outputs (in
terms of functionality) for the sequence of inputs that
provides maximum fault coverage.

The question most frequently asked when performing
testing is often "How much testing is enough?" A correlation
has been found between fault coverage and average quality
level (AQL), where AQL is a measurement of the percentage of
defective parts found by users. Fault coverage must be very
high to obtain an acceptably low AQL. A fault coverage of 50
to 70 percent produces approximately a five percent AQL, 90
percent fault coverage a three percent AQL, and it takes up to
99 percent fault coverage to get a 0.1 percent AQL. For an
applicatior specific integrated circuit (ASIC) 99.9 to 99.99
percent fault coverage is considered mandatory by many experts
today.[Ref. 6:p. 37]

Of concern to a manufacturer of VLSI circuits is the
defect level which is present for a given yield and percentage
of fault coverage on a chip. A derivation, using the following
steps as found in Ref. 8, produces an equation for the defect

level in terms of these parameters:
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Use the stuck-at fault model and assume all stuck-at
faults are independent from each other.

Let P, be the probability of a single stuck-at fault
occurring on a chip which has n such possible faults.
Let yield (Y) equal the probability of a good chip.
Then since each fault is independent

Y= (1-P)n. (1.1)

Let A represent the case where the chip has no stuck-at
faults on it. Let B represent the case where it is
determined that no stuck-at faults are present in any of
m sites that have been tested. Then the probability
of B found from testing m out of n total possible faults
is

P(B) = (1-P))™. (1.2)

The probability of A (probability of a good chip) given
that B occurred (m of the sites were tested without
finding a fault) is

P(ANB)

P(A|B) = B (E)

(1.3)

Now P(AnB) is P(A) = no faults on the chip and P(B) = no
faults at m sites on the chip. If there are no faults
on the chip there are also no faults at any set of m
sites on the chip. Therefore,

P(ANB) = P(A) = (1-pP,)". (1.4)

Let DL = defect level = probability that a defective
chip is manufactured and sent to a user. DL = 1 minus
the probability that a good chip is sent. Therefore,

_ P(ANB)

DL = 1-P(A|B) = 1 S

= 1-(1-P)""™, (1.5)
Substituting equation (1.1) into equation (1.5) gives

RERL (1-Iy

DL =1-Y » =1-Yy =, (1-€)

Let T = fault coverage. Note that T = m/n (i.e.,
testing m of n possible stuck-at faults). Then the
defect level can be expressed as

DL - 1-Y@-T (1.7)

12




The graphical consequences of equation (1.7) can be seen in
Figure 1.4. Note that even for high yields a very high fault
coverage percentage is needed to get an acceptably low defect
level. In a study conducted by Motorola, Published in IEEE

Design_and Test (April, 1985), using an actual manufacturing

line with 50 percent yield, a fault coverage of 97 percent
still produced a one percent defect level [Ref. 6:p. 40].
Figure 1.4 shows how equation (1.7) produces results which
closely follow those obtained from this study even with the
assumptions made about only independent stuck-at type faults
being present on the chip.

The obstacle to using the fault simulation process is
the time it takes to run a simulation evolution. Fault
simulation time tends to rise exponentially as circuits become
more complex [Ref. 9:p. 59]. This can lead to the inability
to perform fault simulation, due to time constraints alone, on
complex chips. Parallel or concurrent simulation algorithms
which allow more that a single stuck-at fault to be examined
during a given time period are alternative methods which can
accelerate the simulation process [Ref. 6:p. 41]. Another
method is via statistical fault grading which attempts to
extrapolate the information gathered from a limited number of
test vectors to predict overall fault coverage by factoring in
information of controllability and observability. Although
obviously not as accurate as complete fault simulation,

statistical fault grading appears to be able to come within a
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few percent of the accuracy obtainable using complete fault

simulation [Ref. 9:p. 59].

B. THESIS OVERVIEW

The primary goals of this thesis are twofold: first, to
investigate the incorporation of DFT on a VLSI chip implement-
ed on the Genesil Silicon Compiler; second, to use Genesil to
design a chip with DFT features, have it fabricated, and
physically test the chip. Through examination of the steps
taken in working with an actual chip, this thesis will
concentrate on the methodology for both incorporating DFT
techniques into Genesil designs and for testing a fabricated
Genesil implemented chip on a commercially available tester.
Chapter II will describe the DFT techniques of Scan Path and
Built-in Test. It will provide a comparison of the relative
advantages and disadvantages of both these techniques.
Finally, it will discuss the manner in which Genesil imple-
ments the Scan Path technique chosen for use on the chip which
was fabricated was fabricated. Chapter III is concerned with
the methodology process used during the design, simulation
testing, test vector fault grading and automatic test vector
generation for a 16-bit correlator chip produced using the
Genesil Silicon Compiler. It will also include a complete
functional description of this chip. Chapter IV provides
information pertaining to the process of getting the chip
fabricated via MOSIS and examines the methodology used and
results obtained during testing conducted on the fabricated

15




chip. Chapter V provides a summary of and draws conclusions
from the research done during the course of this thesis. The
appendices provide copies of the programs and functions
written to perform simulation on the correlator chip, informa-
tion obtained about timing characteristics of the chip, and a
copy of the program written to convert test vectors from the
format provided by Genesil to that needed by the commercial

chip tester.
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II. DESIGN FOR TESTABILITY TECHNIQUES

A. BACKGROUND

The need for a high degree of fault coverage to insure a
quality product has made it necessary to consider DFT issues
while developing new VLSI designs. If internal circuit nodes
cannot be initialized to needed test vector values (an issue
of controllability) and/or the results of the tests cannot be
seen (an observability issue) then the fault coverage possible
will not be as high as is considered desirable. Only by
including DFT circuit logic in a chip can observability and
controllability be increased enough to raise fault coverage to
acceptable levels for complex VLSI chips.

Two major techniques have evolved for incorporating DFT
into chip design. The first is the scan path technique which
involves the serial introduction of externally generated test
vectors into specific internal nodes of a chip to enhance
controllability and the serial extraction of internal node
values from the chip to enhance observability. Built-in Test
or Self-test is the second technique. This technique uses
additional circuitry on a chip to produce test vector patterns
internally and may include circuitry to simplify the analysis
of the test results. These two techniques can be used

independently or both can be included in a single chip design.
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Complementary Metal Oxide Silicon (CMOS) chips designed
using Genesil may include either or both of these techniques.
Genesil provides a Testability Latch Block which may be
included in a chip design for the major purpose of increasing
controllability and observability. For parallel datapath
designs three configurations of the Testability Latch Block
are available:

1. The basic configuration which uses a single shift
register to serially enter or retrieve data.

2. The generator configuration which has the attributes of
the basic configuration as <4ell as including circuitry
for pseudorandom test sequence generation.

3. The signature configuration which has the attributes of
the generator configuration plus signature analysis
logic circuitry.

The first configuration is used during implementation of the
scan path technique while the latter two configurations make

use of Linear Feedback Shift Registers to help implement the

Built-in Test technique.[Ref. 10:p. 24-2]

B. COMPARISON OF THE SCAN PATH AND BUILT-IN TEST TECHNIQUES
1. Scan Path

The scan path technique is a conceptually easy
approach to including DFT into a chip design. Scan path
designs create a situation whereby access may be gained to the
internal circuitry of a VLSI chip using a minimal number of
chip pins devoted to testing. This technique enhances the
observability and controllability of internal nodes which

would otherwise be inaccessible from the periphery of the
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chip. The scan path technique accomplishes this by partition-
ing a design into smaller subsystems which can then be tested
to a higher degree and in an easier manner than the original
system as a whole. A scan path is nothing more than a serial
channel through which data can be shifted to reach flip-flops
which provide a desired initialization state to specific
internal nodes of the chip. Through the shifting process,
specific values can be latched into the internal nodes prior
to the start of a test ("scanned input") and the results can
be shifted out after the completion of a test ("scanned
output") [Ref. 1l:p. 103]. Figure 2.1 illustrates the manner
in which a generic circuit might be broken into smaller
subsystems via use of the scan path technique. Thus, scan
path solves the controllability problem via its ability to
shift in data to internal nodes and solves the observability
problem through its ability to access the results of tests by
shifting them out of the chip.

The scan path technique is often used in connection
with the flip-flops that already exist in a VLSI design due to
the presence of sequential circuitry. This involves connect-
ing the flip-flops which provide 'memory" to the sequential
circuit together in a controllable serial shift register type
fashion. Then by using "switches" controlled by test signals,
the flip-flops can be changed from the "normal" sequential
circuit mode to a "shift register mode" in which the flip-

flops form a shift register through which specific test
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vectors can be introduced into particular locations of the
circuit [Ref. 1l:p. 108]. This makes possible the testing of
the circuit. Figure 2.2 illustrates the process of introduc-
ing a scan path into a sequential circuit.

There are several individual and slightly different
approaches which make use of the scan path idea. The actual
Scan Path method chains together master-slave D type flip-
flops to make the needed shift registers. These D type flip-
flip-flops consist of two latches controlled bv a single clock
signal. The clock signal for the first latch goes through an
inverter to become the clock signal for the second latch. The
disadvantage to this approact is that if the input to the D
flip-flop changes at nearly the same time that the clock does
or if the output of the seccid latch feeds back through
combinational logic to wecome the input of the first latch
then a race condition could exizct.rRef. 2:p. 105)

To overcome this potential race problem an approach
called Level Sensitive Scan Design (LSSD) was developed. It
utilizes the same basic idea as Scan Path for moving test
vectors into and out of the circuit but uses two separate
clocks, each controlling a separate latch from a two latch
pair. By using two separate clocks to control a latch pair
element of the shift register, the LSSD technique overcomes
the potential race problem present for the Scan Path tech-

nique. [Ref. 2:p. 105]
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Finally, a related method which has been developed is
the Scan Set method. This technique varies from straight scan
path methods in that although it uses shift registers, they
are not located in the data path. Instead, the shift regis-
ters are placed adjacent to the circuit's own sequential
circuit latches. There are two advantages to this method.
First, a designer can determine exactly which of the sequen-
tial circuit latches he desires to have the ability to set if
the ability to set all latch points is not needed or desired.
Secondly, Scan Set sampling can occur during the sequential
circuit clocking period thus providing a snap shot of the
sequential circuit during operation.[Ref. 2:p. 106]

2. Built-in Test

The Built-in Test (BIT) technique is inherently more
complex than the scan path technique. BIT involves a tradeoff
of additional chip circuitry above that used in the scan patl
technique against the ability to internally generate test
vector patterns and compact test result responses. This
facilitates the testing procedure by moving a portion of the
test process from off to on chip. The scan path technique
needs to scan-in a test vector and or scan-out a test result
for each test cycle. In contrast, BIT reduces the need to
scan-in a new test vector for each test cycle since it
internally generates its own test vector patterns after an
initialization process. Additionally, BIT can reduce the need

to scan-out test results each test cycle by encoding the
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results in a more compact form which need be looked at only
after the completion of a large number of test cycles. The
combination of these two effects results in BIT allowing
multiple test cycles to proceed at full system speed with only
the overhead of single initialization and final result
gathering phases to slow it down.[Ref. 1l:pp. 169, 170]

The use of a structure called a Linear Feedback Shift
Register (LFSR) is the main method which has been developed to
provide internally generated test vector patterns. The
patterns which are produced are normally deemed to be pseudo-
random in nature since they follow no apparent order from
pattern to pattern and meet some basic statistical tests for
randomness. In reality they are not random, thus the designa-
tion pseudo, but rather follow a predetermined sequential
order which depends both upon the implementation configuration
of the LFSR and upon the initialization values place in the
flip-flops of the LFSR.[Ref. 1l:p. 172]

The basic structure of a LFSR as implemented by
Genesil is shown in Figure 2.3. It consists of an n-stage
shift register with each stage position serving as a latching
mechanism for a single bit. The multiplexer control line R
determines whether the input for the bit zero stage position
comes from the feedback loop or from the serial input line
TIN. Initialization is provided to the LFSR by serially
loading a desired value into each shift regicter bit stage

position. Once initialization is complete the control line R
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can be set so that the bit zero stage position accepts values
only from the feedback path. The changing contents of the
LFSR bit stage positions will produce a pseudorandom sequence
determined by the specific locations where exclusive-or (XOR)
gates are found in the feedback path. By taking the output
from each bit stage position and forwarding it to other
circuit logic on the chip a sequence of internally generated
test vector patterns is produced by the LFSR.

The locations where XOR gates are present in the
feedback path is dependant on a constant called the LFSR
polynomial which determines the number of terms between
repetitions in the pseudorandom sequence [Ref. 7:p. 66]. It
is desirable to have both the number of terms produced by the
pseudorandom sequence generator be of maximum length and to
utilize a minimum number of XOR gates in the feedback path.
A maximum length sequence generator from an n-stage LFSR can
produce 2"-1 different sequence terms [Ref. 1l:p. 175].
Reference 8 provides a detailed discussion on the development
of LFSR polynomials which minimize the number of XOR gates
needed to achieve a maximum length generator sequence for a
given size n-stage LFSR.

A modified LFSR structure may be used to form a signature
analysis register as shown in Figure 2.4. The signature
analysis register is formed by adding an additional XOR gate
as the last item in the feedback path to perform an XOR

operation on the feedback path value and an incoming data bit
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value [Ref. 8:p. 143]. Therefore, the pattern present in the
signature analysis register is dependant on the initialization
vector loaded serially into the shift register, the XOR gate
structure of the feedback path, and the data sequence occur-
ring for the incoming data bit. If the signal analysis
register is initialized with a known value and the incoming
data sequence is also known then the pattern which should be
present in the shift register portion of the signal analysis
register after a specific number of clock cycles can be
determined through simulation.

Placing a signature analysis register on an output
line of a circuit being tested allows the output test sequence
results for a large number of consecutive tests to be compact-
ed to a shorter cumulative sequence. Thus, the signature
analysis register serves to encode the test result sequence.
The encoded, cumulative results can be shifted out to compare
against simulated results obtained by using the output data
sequence from a properly functioning circuit. If the results
vary between the two cases then a fault in the circuit has
been detected.[Ref. 1l:p. 177]

Built-in Logic Block Observation (BILBO) is a BIT
method which is similar to the signature analysis approach.
"The BILBO structure differs from a signature analysis register
mainly in that it has available additional XOR gates placed
before each bit position to allow a total of n incoming test

data bits to influence the encoded BILBO register value
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[Ref. 8:p. 144]. Therefore, BILBO is well suited for compact-
ing test results obtained from multiple internal nodes in a
chip.
A general strategy for utilizing BILBO is shown in
Figure 2.5 and Figure 2.6. Figure 2.5 shows the configuration
used to test the first combinational logic block. Figure 2.6
shows the shifted configuration used to test the second
combinational logic block. BILBO registers are ideal for this
setup since if their test data bit input lines are held
constant they can function as a LFSR test pattern generator
and otherwise they can function as a test result compactor.
By shifting the function performed by the two BILBO registers
both sets of combinational logic can be adequately tested.
[Ref. 2:p. 107]
3. Comparative Advantages and Disadvantages
a. §8can Path Advantages
The primary advantage in using the scan path
technique is that it increases both the controllability and
observability of otherwise inaccessible internal nodes. 1In
doing so it raises the obtainable fault coverage level
possible for a chip. Using a scan path makes possible the
introduction of a minimal number of specifically designed test
vectors to maximize the fault coverage [Ref. 1l:p. 379].
Using these customized test vectors may in some circumstances

reduce the total number of test vectors, as compared to the
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BIT technique, that need to be scanned in to achieve a desired
fault coverage level [Ref. 7:p. 93].
b. 8can Path Disadvantages

The disadvantages of the scan path technique are
related to both external test gear complexity and cost and to
the time needed to perform adequate testing. Since all test
vector inputs and test result outputs are generated or
examined external to the chip, a complex, costly test gear
setup is normally needed [Ref. 7:p. 94]. This test gear must
be able to both generate and apply the customized test vectors
required and then analyze the test results for each test
vector input used. Thus, the test gear must work with a much
larger volume of data than if the BIT technique is used.

The need to both load each test vector input and
extract each test result output in a serial manner can involve
a significant overhead of time. Desired testing may take a
significantly large number of clock cycles and the testing
time overhead will increase with the length cf the scan path
used. Also, the time overhead involved to utilize a multiple
number of test vector patterns is much greater than if BIT,
which needs only a single shift-in and shift-out of data for
a set of multiple test vector patterns, is used.

¢. Built-in Test Advantages

A main advantage of the BIT technique is that it

allows a portion of the test functions to be moved from off to

on chip. This may make the use of simplified external testing
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processes or test gear possible. By generating test vector
patterns and compacting test results internally, BIT can
greatly reduce the volume of data which needs to be shifted in
or out of the chip [Ref. 2:p. 108]. Finally, by combining
this lowered overhead with an ability to generate and apply
the internally generated test vector patterns at the rated
speed of the chip BIT can greatly reduce the total time spent
in applying a specific number of test vector patterns to the
chip [Ref. 11l:p. 379].
d. Built-in Test Disadvantages

One potential disadvantage of using BIT is
encountered when either signature or BILBO registers are used
to accomplish test result compaction. This problem is termed
aliasing. Aliasing refers to the situation where the encoded
result produced in the signature analysis or BILBO register
for a faulty circuit is the same as that produced for a fault
free circuit. This occurs when the test data streams for a
faulty circuit and fault free both compact to the identical
encoded result. The probability of aliasing occurring is a
function of the number of bits compacted from the test data
stream versus the number of stages in the register. This
probability will rise if either the number of bits to be
compacted 1is increased or if the number of stages in the
register is decreased.[Ref. 8:p. 106]

A second major disadvantage for BIT centers on the

test vector patterns which can be generated by a LFSR network.
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Although a LFSR maximum length sequence generator can produce
a nearly exhaustive, 2"-1 set of test patterns for an n-stage
LFSR, the sequence order of the test patterns produced may be
nonoptimal for achieving a maximum level of fault coverage
[Ref. 11:p. 379]. It is possible that there may be no
initialization pattern which can be applied to the LFSR to
produce a properly sequenced set of test patterns to maximize
the fault coverage.

A final disadvantage is that BIT requires addi-
tional circuit logic above that needed for the scan path
technique. A multiplexer is needed to control the flow of
data into the shift register chain and XOR gates are needed
both in the feedback path and for the any entry points of test
result data which is going to be compacted. The cost of this
additional circuit overhead can be looked at in terms of the
ratio of circuitry needed for testing to that of the circuitry

needed for performance of the chip's required functions.

C. GENESIL IMPLEMENTATION OF THE SCAN PATH TECHNIQUE

The device used during this thesis to investigate the
incorporation of DFT into chip design is a 16-bit correlator.
It was chosen because it involves an easily understood
functional design which can readily incorporate DFT. Addi-
tionally, this design was chosen because consideration of DFT
issues for it had already been looked at in previous thesis
work by Davidson {Ref. 7]. The goal established for the chip
design which was fabricated was to incorporate that DFT
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technique which would maximize fault coverage for a minimum
number of applied test vector patterns. Based on the results
and conclusions in Reference 7 about this correlator design,
the scan path technique was chosen as the method to use to
accomplish the chip design goal.

Implementation of the scan path technique for a Genesil
produced design is accomplished by including Genesil Testabil-
ity Latch Blocks. These blocks consist of a set of serially
connected, individual testability latches. Each testability
latch operates on a single bit of data. By stringing the
testability latches together serially a scan path shift
register channel is produced. The Testability Latch Blocks
have the ability to perform five different operations:

1. During normal (nontest) operation of the chip they serve
as data storage latches.

2. The shift operation provides the ability to serially
load or extract a test vector via the scan path. Each
shift operation moves the scan path shift register data
one bit further along the scan path in the direction
towards the scan path output.

3. The force operation is used together with the scan-in
process. It provides the ability to take a test vector
which was serially loaded into the scan path shift
register and force a parallel load of its values into
the data storage latches.

3. The sample operation is used together with the scan-out
process. It causes the values in the data storage
latches to be loaded in parallel into the shift regis-
ter. Values can then be serial shifted out of the chip.

4. The swap operation makes possible coupled force and
sample operations. The result is that sampled data can
be removed from the data storage latches and shifted out
at the same time that a new test vectors is shifted in.
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Through these five operations Testability Latch Blocks are
able to enhance controllakility and observability within a
chip design.[Ref. 12:p. 15-2]

The circuit configuration of a single testability latch is
shown in Figure 2.7. Five control gates and three D type
transparent latches are used in the testability latch circuit.
The control gate signals LOAD, A, B, F and S both enable the
gates so as to route data between the latches and provide the
signals which cause the latches to be loaded. Latch D serves
as the data storage node and is loaded when either the LOAD or
F signal goes high. Latches S1 and S2 form the shift regis-
ter. Latch S1 is lcaded when either the A or S signal goes
high. Latch S2 is loaded when the B signal goes high. To
form a complete scan path the TOUT signal from each testabili-
ty latch is connected to the TIN signal of the testability
latch for the next-most-significant bit. Only the TIN signal
for the least-significant bit (LSB) and the TOUT signal for
the most-significant bit (MSB) cf the scan path need to be
connected to external pins on the chip.[Ref 12:pp. 15-3, 15-4]

The functions performed by the testability latches are
based on the control gate signal sequences introduced to the
circuit. To load the data storage latch with the value
present on the DIN signal line the LOAD signal must be raised
high. The latched data value then becomes available on the
DOUT signal line. To shift data upwards one significant bit

in the scan path shift register the control A and B signals

35



TOUT

LATCH
S2

—\

Zﬁs__B

DIN LATCH DOUT

LOAD

LATCH
S1

%
S /N—2A

TIN

Figure 2.7 Testability Latch Circuit Configuration
After Ref. 12

36




must be sequentially strobed. To force data to be copied from
the scan path shift register to the data storage latch the
control F signal must be strobed. To sample or copy data from
the data storage latch to the shift register the control S and
B signals must be sequentially strobed. To swap or exchange
data between the shift register and the data storage latch the
control S, F, and B signals must all be sequentially strobed.
(Ref. 12:p. 15-5]

In Genesil, using random logic blocks, there are three
configurations of basic testability latches available. Their
differences are based on the methods used to provide clock and
control signals to the testability latches. These three
configurations are:

1. The TLATCHU configuration. This configuration uses
unclocked A, B, F and S control signals which function
independently of any clock signals found on the chip. It
requires that externally generated control strobes be
used to drive the A, B, F and S control signal lines
directly. Typically these control strobes originate
from off chip. The chip designer must ensure that the
timing sequence requirements for the control signals are
met to perform the desired operations. Table I speci-
fies the different operation modes of the TLATCHU
configuration.[Ref. 12:p. 15-6]

2. The TLATCHG configuration. It makes use of the phase_a
and phase_b clock signals derived from the two-phase
global system clock to implement timing relationships
used in producing properly timed control sequence orders
for the A, B, F and S control signals. Input control
signals named M1 and M2 are used to encode the operation
which is desired for the testability latch. These
signals are latched with additional circuitry and are
then decoded to produce the correct A, B, F and S
signals. Therefore, only the M1, M2 and LOAD signals
need to be generated external to the testability latches
(normally from off chip). Table II defines the encoding
for and operation modes of the TLATCHG configuration.
[Ref. 12:pp. 15-14, 15-15]
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TABLE I
TLATCHU CONFIGURATION OPERATION

Required Inputs Operation
A B F S Mode
0O 0 O O NORMAL
1 0 0 0O *
c 1 0 0 SHIFT
0O 0 1 o FORCE
0O 0 o0 1 *
0 1 0 0 SAMPLE
0O 0 o0 1
0 0 1 0 SWAP"

0O 1 0 O

*Mode requires a sequence of non-overlapping
strobes in the order shown.

TABLE II
TLATCHG CONFIGURATION OPERATION

Encoded Decoded Outputs Relative
Inputs Operation to Clock Phases

M1 M2 Mode phase_a phase_b

W

0 0 SHIFT A B

1 0 FORCE‘" F B

0 1 SAMPLE S B

1 1 SWAP®® S -

M1L0AD signal disabled during phase_a of FORCE cycles.

(SWAP must be followed immediately by a FORCE cycle to
toc override Latch D and advance the Latch D contents

into Latch S2.
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3. The TLATCHL configuration. It is similar to the TLATCHG
configuration except that it uses its own local clock
vice the global system clock to produce timing informa-
tion. Use of this local clock allows this configuration
to perform operations independently of the status of the
global system clock. The clock signals phase_ta and
phase_tb are derived from this local clock and provide
properly timed control sequence orders for the A, B, F,
and S control signals. Normally the local clock signal
originates as an additional external input to the chip.
The M1 and M2 control signals perform in the same manner
as they do for the TLATCHG configuration. Table III
defines the encoding for and operation modes of the
TLATCHL configuration. [Ref. 12:pp. 15-10, 15-11]

As is discussed in Chapter 3, the TLATCHL <onfignration was
chosen as the means of incorporating a scan path into the

16-bit correlator chip which was fabricated.

TABLE III
TLATCHL CONFIGURATION OPERATION

Encoded Decoded Outputs Relative
Inputs Operation to Clock Phases

M1 M2 Mode phase ta phase tb

— =

0 0 SHIFT A B

1 0 FORCE!" F B

0 1 SAMPLE S B

1 1 SWAP? S -

M LOAD signal disabled during phase ta of FORCE cycles.

(> SWAP must be followed immediately by a FORCE cycle to
to override Latch D and advance the Latch D contents
into Latch S2.
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III. DESIGN FOR TESTABILITY IMPLEMENTATION METHODOLOGY

This chapter discusses the methodology used with the
Genesil Silicon Compiler to implement a chip incorporating
DFT. The different menu features needed, used, and available
within Genesil serve as the chapter subdivisions for present-
ing information on the different actions and multiple criteria
considered during the production of a DFT chip design.
Although the chapter was broken into subsections based on
working with features within Genesil, it must be realized that
chip design in Genesil involves a continuous interrelationship
between all Genesil features available. Results obtained or
decisions made during the progression of design steps while
using one Genesil feature will carry over into the results
obtained or approach taken while using another Genesil
feature. Design in Genesil can be an iterative process
involving multiple cycles of design changes due to information
obtained from the different Genesil features. Specific
information on all aspects of Genesil is provided in the
documentation for the Genesil Silicon Compiler. Additionally,
Reference 13 provides excellent information and a tutorial on
"the methodology for and makeup of a Genesil produced design.

To present a high level view of the chip as a whole, this
chapter starts by presenting a functional description of the

complete correlator chip design. The remainder of the chapter
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concentrates on the specific reasoning which was used, the
engineering design decisions which were made, and the steps
which were taken to produce the chip design. The second
section in this chapter discusses the operational and engi-
neering design criteria which were established and the
specific methodology steps used within Genesil to produce a
chip which met these criteria. The third section emphasizes
both the steps used and information gained from functional
test simulation and timing analysis. The last section
provides information on how Genesil's Automatic Test Genera-
tion feature was used both to produce a maximum fault coverage
test vector set and to fault grade the test vectors produced
during functional test simulation. Although placed last in
the chapter, this section also provides further analysis on
the process used to decide where to place and how to utilize

the DFT technique of a scan path.

A. FUNCTIONAL DESCRIPTION

The chip which was fabricated is a 16-bit correlator. It
performs a comparison between an incoming 16-bit word of data,
which is placed into the data register, and a preloaded 16-bit
word of data found in the reference register. The chip
performs a bit by bit comparison between the two registers and
produces a 5-bit binary number which indicates the number of
bits, from zero to 16, that are positively correlated
(matched) between the two registers. Additionally, a 16-bit
mask register exists to enable or disable the correlation
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process for a given set of bits in the data and reference
registers. If the mask register has a specific bit set to a
logic 1 the correlation results for corresponding bits in the
data and reference registers are included in the correlation
process. If the mask register has a specific bit set to a
logic 0 the correlation results for the corresponding bits in
the data and reference register are not included in the final
result which indicates the total number of bits that matched.
The data, reference, and mask registers are all provided with
a means to be selectively loaded in either a serial or
parallel manner. The final correlator chip design is parti-
tioned into five main sections: input registers, XNOR regis-
ter, combiners/testability latches, adder and output. Figure
3.1 is a block diagram showing the relationships and main
signals of these sections.
1. Input Registers

The input section of the chip consists of three
identically designed input register general modules: data_in
(the data register general module), ref_in (the reference
register general module) and mask_in (the mask register
general module). Each of these input register general modules
holds a 16-bit word to be used during the correlation process.
These 16-bit words can be controllably loaded in either a
serial manner via the SERIAL_IN input pin and serial_in signal
or in a parallel manner using the IN PADS[15:0] input pins and

par[15:0] signals. The value of the sp con signal, as input
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to the SPCON input pin, determines which load method is used.
If sp_con is a logic 1 the 16-bit words are loaded in a serial
manner. If sp con is a logic 0 the 16-bit words are loaded in
a parallel manner. A load control signal (datcon for the
data_in general module, refcon for the ref in general module,
and mskcon for the mask in general module) is used to control
whether an input register general module is allowed to load
data which is present at the SERIAL_IN or IN_PADS[15:0)] pins
or whether loading is disabled for a particular input register
general module. As a result, the three input register general
modules can controllably load either the same data all at once
or individually load different data one at a time via manipu-
lation of their load control signals.

Each input register general module consists of two
serially connected 8-bit shift register modules, to hold the
16-bit words, and a control block. The shift register modules
(datal and data2 for the data_in general module, refl and ref2
for the reference general mcdule, and maskl and mask2 for the
mask general module) are formed from eight D flip-flop/multi-
plexer combinations. During serial loads the input for each
D flip-flop is the output from the previous D flip-flop/multi-
plexer stage. The output line for the MSB of the first shift
register module is connected to the serial input line of the
multiplexer for the LSB of the second shift register module.
Thus the two shift register modules are effectively connected

in a serial manner to form a 16-bit shift register. For
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parallel loads, the multiplexers get the input values to pass
to the D flip-flops via the par[15:0] signal lires. The
sp_con signal controls the multiplexers to determine whether
they pass values to the D flip-flops from their serial or
parallel load lines. The control block for each input
register general module consists of a simple two-input AND
gate which has phase_b of the global system clock as one
input, the appropriate load control signal as the second
input, and which produces the clock signal for the D flip-
flops of the shift register modules as its output. Therefore,
making the load control signals a logic 1 allows passage of
the phase b clock signal so that the D flip-flops can be
loaded with new values. A load control signal set to logic 0
inhibits the clock signal to the D flip-flops thus causing
them to retain their present values regardless of any changes
to the values present at the chip's serial or parallel input
load pins. Figure 3.2 illustrates a 1-bit wide slice from an
input register general module.
2. XNOR Register

The XNOR register is a random logic module, labeled
xnorreg, consisting of 16 two-input XNOR gate, two-input AND
gate combinations. One combination is used for each of the 16
bit positions for the correlation process. Figure 3.3 depicts
a 1l-bit wide slice of the XNOR register module. The two
inputs to the XNOR gates are the outputs from the D flip-flops

of the data and reference registers. The XNOR gate produces
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an output which is a logic 1 if these values are positively
correlated (match) and a logic 0 if they are different. Thus
it in effect compares each corresponding bit position in the
data and reference registers. The output of the XNOR gate
along with the output of the D flip-flop from the correspond-
ing bit position of the mask register serve as inputs to the
AND gate. Therefore, the mask register bits determine whether
positively correlated results obtained from the data and
reference registers are passed onwards to be counted or are
blocked from being considered. A logic 1 in a mask register
bit position produces a logic 1 output from the XNOR register
in that bit if the data and reference register words match and
a logic 0 if they do not. A logic 0 in a mask register bit
position causes the XNOR register to output a logic 0 for that
bit position regardless of how the data and reference register
bits correlate. It thus causes that bit position to become
masked from inclusion in the final chip output which indicates
the number of positively correlated bits.
3. Combiners/Testability Latches

The purpose of the two combiners, combinerl and
combiner2, is to collectively reduce the output of the XNOR
register to four 3-bit binary numbers. Each 3-bit binary
number is the summed total of positively correlated, nonmasked
bits from a 4-bit wide slice of the data and reference
registers as output by the XNOR register. Figure 3.4 shows

the logic gate representation of how one 4-bit wide slice of
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results from the XNOR register output is summed to produce a
3-bit binary number representing the total of positively
correlated bits. To incorporate design for testability
teatures into the chip, a scan path consisting of serially
connected testability latches was placed between the gates of
the combiocer function as indicated by the dashed line of
Figure 3.5. This dashed l1ine represents the demarcation
between the gates, for a given 4-bit slice of the combiner
function, which belong to combinerl and those found 1in
combiner2. A discussion on why the scan path was placed here
is provided in the last section of this chapter.

The testability latches themselves are located in the
tlatch32 module which is formed from two 16-bit testability
latches {the maximum random logic testability latch size
allowed in Genesil) tlatcho and tlatchl. The testability
latches are operationally controlled via the control signals
ml, m2, and load which originate from the M1, M2, and LOAD
input pins respectively. Additionally, data can be scanned
into and out of the chip through the scan path testability
latches using the testin and testout signals from the TESTIN
input pin and SHIFTOUT output pins. The clocking needed for
the different operations of the testability latches is
provided by the phase ta and phase tb clock signals derived

from the clock signal input to the CLOCK2 input pin.
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4. Adder

The purpose of the adder section is to take the four
sets of 3-bit binary numbers produced as an output of the
combiner function and add them together to produce a 5-bit
binary number which represents the sum total of all positively
correlated, nonmasked bits between the 16-bit words in the
data and reference registers. The adder module consists of
three adders. There are two 3-bit adders, ADDERO and ADDER1,
which each take two 3-bit binary numbers output from the
combiner function and add them to produce a single 4-bit
number. The third adder, ADDER2, takes the two 4-bit numbers
produced by ADDERO and ADDER1l, adds them together, and

produces the 5-bit binary number result on the signal lines

out[4:0]. Figure 3.6 shows the configuration of the adder
module.
5. Output

The output module is included on the correlator chip
as a means whereby the output results of the correlation
process can be controllably turned on or off. This section
consists of five two-input AND gates as shown in Figure 3.7.
Each AND gate has as one of its inputs a single bit from the
final binary number result produced by the adder section and
as its other input the control signal output which originates
from the OUTCON input pin of the chip. The outputs from the
AND gates form the final output signals cout[4:0] which are

sent out of the chip via the output pins OUT_PADS[4:0]. Thus,
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the control signal named output can either activate the chip
allowing results to be presented to the outside world or

inhibit the presentation of these results.

B. DESIGN CRITERIA, DECISIONS AND TECHNIQUES

The final 16-bit correlator chip design produced was
affected by both specific engineering design and operational
criteria and by the procedural steps necessary for designing
a chip in Genesil. Since Genesil produces chips by utilizing
a library of already designed objects (Genesil blocks), the
chip designer must accept the limitations of producing designs
done at the gate level or above instead of working at the
transistor level. Therefore, the cost of working in Genesil
is less ability to optimize the design in terms of performance
and chip size. 1In contrast, using Genesil provides benefits
related to areas such as reduced design time, a lower level of
required designer knowledge, easy to use simulation capabili-
ties and a fest means of determining fault coverage levels.

For comparison purposes, two 16-bit correlator chips were
designed in Genesil. BASIC_CHIP is the 16-bit correlator
design discussed in the fu >ticnal description without any DFT
technique included. DFT_CHIP is the same design but with the
addition of testability latches to form a scan path as
discussed in the functional description. Within the limita-
tions of Genesil, the following set of criteria was estab-

lished for the DFT_CHIP:
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1. Functionally, the DFT_CHIP should produce the same
correlation results for a given set of bits in the data,
reference, and mask registers as does the BASIC_CHIP.

2. The only difference between the DFT_CHIP and the
BASIC CHIP should be the addition of testability
latches, along with pins for the supporting control,
clock, and I/0 signals, to form a scan path.

3. The design area size for the DFT_CHIP should be mini-
mized to the greatest extent possible to lower fabrica-
tion costs.

4. The fabrication line and feature size chosen for usage
in Genesil should be compatible with those possible for
chip fabrication via MOSIS.

5. There should be a maximum of 40 pins for the DFT_ CHIP to
allow it to be accommodated in the test jig available
for use with the commercial tester.

6. The testability latches used should be of the TLATCHL
type to gain the advantages of using a local clock to
perform operations in the scan path.

7. Fault coverage for the chip should be maximized through
the choice of where to place the scan path to increase
observability and controllability.

8. The DFT_CHIP should be designed to utilize the highest
clock frequencies possible within the limitations of the
other criteria.

As can be seen, these criteria are divided between those
related to fabrication regquirements and those related to
desired performance or operational characteristics.

The overriding criteria for the fabrication requirements
became the need to layout a chip design that was both small
enough and oriented properly to fit within a maximum design
area size of 4.6mm wide by 6.8mm high. This size limitation
originated from the need to keep the fabrication cost for the
chip within a reasonable limit. The size of 4.6mm by 6.8mm is

the largest which could be used for fabrication via MOSIS
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within the budget allocated for the chip. The criterion
emphasized for performance was maximizing the fault coverage
possible for the chip. This necessitated intelligent place-
ment of the scan path to enhance observability and controlla-
bility. Information on how this was accomplished is located
in the subsection of this chapter titled Automatic Test
Generation and Fault Coverage.
1. Design Decisions and Techniques to Minimize Size

The design steps for the DFT_CHIP followed the normal
sequence used in Genesil. First, blocks were chosen from the
available library and combined to form modules. Based on
utilizing individual gates for the designs of the input
registers, XNOR register, combiner and output sections of the
chip, Genesil random logic blocks were use td accomplish
this. Netlisting was used to specify the signal interconnec-
tions between the blocks. The objects making up the input
registers were further netlisted and then floorplanned
together to form larger general modules. Note that at this
point the input register general modules consisted of a single
l16-bit shift register and the control block. These actions
resulted in the following modules and general modules being
created: data_in, mask_in, ref in, xnorreg, combinerl,
combiner2, tlatch32, adder and output. Next, modules and
general modules were placed into the chip and the independent
blocks (pads) for the input, output, clock, and power supply

pins were added. The chip as a whole was then floorplanned.

55




Finally, the chip was compiled using the VTI-CN20A 2.0um
n-well CMOS process from VLSI Technology, Inc. as the choice
from among the Genesil supported fabrication lines. To
determine the size of the chip designed, a route plot as shown
in Figure 3.8 was produced.

Since the first design attempt produced a chip of size
5.902mm by 8.276mm, chip size reduction was mandated. Most of
the work done to reduce chip size involved changes to the way
the chip was floorplanned. Floorplanning in Genesil consists
of three categories: placement, pinout and fusion. Placement
determines the manner and orientation in which objects are
physically located next to each other. For the initial design
attempt the Genesil AUTO_PLACEMENT (automatic placement)
feature, AR_PLACE option was utilized. This feature and
option performs placement based on an attractive repulsive
algorithm which orients objects with many common signals next
to each other irrespective of their sizes [Ref. 14:p. 3-7].
Figure 3.9 shows the placement configuration which resulted
from using automatic placement. To optimize the size in the
subsequent design attempts, manual vice automatic placement of
the objects was used. Manual placement allows a designer to
specify exactly where items should be located in relationship
‘to each other. TFor the DFT_CHIP this allowed the input
register general modules to be oriented along the height axis,
at right angles to the other modules, to attempt to form a

rectangle smaller than the 4.émm by 6.8mm space allotted.
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Figure 3.10 shows the modified placement configuration which
resulted from the use of manual placement.

Manual placement still did not solve the size problem.
The chip produced was almost within the width tolerance of
4.6mm but was elongated along the height axis due to the thin,
long nature of the input registers. To solve this problem the
input registers were redesigned. The 16-bit shift register
sections were broken into the two 8-~bit shift register
sections discussed in the functional description. The input
register general modules were then refloorplanned, using
manual placement, to place the two 8-bit shift register
sections side-by-side. The resulting input register general
modules were approximately half as elongated and twice as wide
as the original configuration. Figure 3.11 shows the place-
ment configuration of the data_in input register prior to the
change. Figure 3.12 (shown at a larger scale) shows the
results after the change. This modification turned out to be
the single largest size reducing decision made for the chip.
Not only did it reduce the elongation of the height axis of
the chip but it also caused less nonoccupied/nonutilized space
to be present within the chip design.

To further reduce the size dimensions, the other two
aspects of floorplanning were considered. First, the floor-
planning pinout feature was utilized. Within general modules
the pinout feature allows choices to be made as to which side

of a general module (north, east, south, or west) connectors
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for signals going to or from the general module will be
placed. By considering how general modules have been placed
within the chip a designer can optimize the routing direction
of signals between general modules and other chip objects.
Connectors for signals in the general modules should be placed
on the side of the general module closest to the chip objects
which share the signals. Figure 3.13 is an example of the
pinout form used to specify connector edge locations for a
general module. At chip level pinout determines the pad
placement locations for signals which exist external to the
chip. By placing pads for specific signals as close as
possible to the objects using these signals wire lengths and
routing complexity within the chip can be decreased.

The last feature of floorplanning utilized to reduce
the chip size was the fusion feature. Fusion determines the
assignment of routing channels which affect wire routing
within the floorplan of the chip [Ref. 15:p. 7.5]. Routing
channels are formed through the fusion of two objects, the
fusion of one object to a previously defined fusion region, or
the fusion together of two previously defined fusion regions
(Ref. 15:p. 7.5]. Chip size can be minimized by performing

fusion in a sequence that fuses together items whose adjacent

‘boundaries are the same length [Ref. 15:p. 7.5]. Genesil

offers the features of both AUTO_FUSE (automatic fusion) and
FUSE (manual fusion). AUTO_FUSE automatically fuses together

all items not already fused but does not necessarily broduce
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the most efficient floorplan [Ref. 15:p. 7.17]. To help
reduce the chip size a change was made from using automatic
fusion on the first design attempt to using manual fusion on
subsequent design attempts. The ability to reduce chip size
through intelligent manual fusion decisions was validated
during this process. However, if manual fusion is going to be
used it must be done carefully since it was determinea “hat
unwise fusion order choices can have highly adverse effects on
overall chip size.

Upon completion of all the changes discussed concern-
ing floorplanning the chip size had been reduced to 4.743mm by
6.727mm. To achieve the additional small reduction in size
needed for the width axis two additional design decisions were
considered. VTYtirst, Genesil provides the choice of using
either TTL or CMOS drivers for output pads. Output pads using
CMOS drivers are larger than those using TTL drivers and will
increase the size of the pad ring surrounding the core of the
chip [Ref. 16:p. 5-4]. Secondly, Genesil provides two options
for electro-static discharge (ESD) protection for input pads.
ESD circuitry is used to prevent the damaging buildup of large
static voltage potentials at input pads, which is common to
CMOS chips, by providing a low-impedance discharge path
through diodes to either the VDD (power) and or the VSS
(ground) supplies [Ref. 16:p. 5-3]. Genesil provides two ESD
protection options when specifying the input pad configura-

tion. NP=-PROTECT uses protection diodes connected to both the
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VDD and VSS supplies but produces pads larger in size than N-
PROTECT which provides only a protection diode to the VSS
supply [Ref. 16:p. 5-3]. The initial chip design utilized TTL
output drivers and the NP-PROTECT option. To achieve the
remaining size reduction needed, the final DFT CHIP deciqgn
sacrificed some degree of protection by using only the N-
PROTECT option. This choice reduced the final design to a
size of 4.550mm by 6.627mm. Figure 3.14 is a route plot for
the DFT_CHIP which shows the final configuration results
obtained for the overall size minimization process.
2. Additional Design Decisions and Techniques

The remaining design decisions made for the DFT CHIP
can be split into those related to scan path operations and
those related to pad specifications. Based on the criteria of
desiring scan path operations to be able to proceed indepen-
dently of the global system clock, the TLATCHL testability
latch configuration was chosen to form the elements of the
scan path. Only this Testability Latch configuration, from
among those available in Genesil, provides the ability to work
with a local clock for scan path operations. The criteria
requirement itself was established to enhance chip capabili-
ties by providing both a method to perform in-system testing
of an operating chip and to allow operation of the scan path
a different clock rate from that of the rest of the system.
In-system testing for a chip involves checking its operating

condition without removing it from its physical working
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environment. This could be done in the DFT_CHIP by halting
normal chip operations through either disabling the load
control signals (datcon, mskcon and refcon) to the input
registers or through disabling the testability latch load
signal. The chip would then be in a test mode where the local
scan path clock scans test vectors into or out of the chip to
check its operation. The use of the TLATCHL configuration was
also chosen to attempt to make possible the use of a clock for
scan path operations that both runs at a higher speed than the
global system clock and that can continue scan path operations
during periods when the global system clock is not operating.
These features would help speed the rate at which test vectors
or test results could be scanned into or out of the chip and
also would enhance the chip's in-system testing capabilities.

Design choices for the pad specifications were made to
enhance operational performance while still being conservative
enough to help insure that the fabricated chip would operate
satisfactorily. First, pads for power supplies had to be
provided to the chip. Genesil produces designs which require
power for two separate regions: the chip core and the pad ring
[Ref. 16:p. 5-59)]. Options exist in Genesil to provide this
power through either separate VDD and VSS pad pairs for each
region or through a single combined pad pair for both regions.
Except for small pad-limited designs, the combined option is
not recommended since it does not provide any isolation from

noise which might be generated by the output pad drivers
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[Ref. 16:p. 5-61]. Therefore, the conservative choice of
using separate VDD/VSS pad pairs for the riog and core power
supplies was made for the DFT_CHIP.

Next, the specifications were made for the clock pads
used by the input signals for the global system clock and the
scan path local clock. Genesil clock pads convert a single
external clock signal into internal two-phase non-overlapping
clock pair signals required to operate genesil blocks
[Ref. 16:p. 5-15]. The DFT_CHIP uses the clock pad option of
NO DIVIDE which provides internal clock signals at the same
frequency as the external clock signal. Clock pads have their
own power source requirements which depend on the loading
placed on themn. The primary global system clock must be
provided with its own power pads (VDD and VSS) which are
isolated from the ring power supplied to the other ring pads
[Ref. 16:p. 5-25]. To accomplish this requirement the
LOCAL_ISOLATED option was chosen for the primary global system
clock pad. This choice produced a clock pad with its own VDD
and VSS inputs attached. For additional clock pads in a
multiple clock design the requirement for isolated power is
dependant upon the degree of loading placed on the clock

signals. A lightly loaded clock (£20pF) can utilize power

‘distributed by the ring power pads vice needing its own power

supplies [Ref. 16:p. 5-26]. Since the 1local clock for the
scan path testability latches met this requirement, ring power

was used vice choosing isolated power. Note that the maximum
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operating frequency to be used for the clocks is not chosen in
the pad specification but rather is done during the netlisting
process for the clock signals.

Decisions concerning the input pads were made next.
The decision on ESD was described previously in the section on
minimizing chip size. The other design decision for the input
pads was to choose whether external signals would be latched
or passed completely untouched from outside to inside the
chip. For the DFT_CHIP, Genesil's Direct option, which
provides a transparent latch at the input pad, was chosen. A
latch configuratiun was chosen to ensure that there would be
at least a half clock cycle during which unchanging input data
could propagate to and be placed into the input registers.
Input data is sampled and passed during phase b of the latch
clock signal and is held during phase_a [Ref. 16:p. 5-39].
lLtter chip fabrication, a major design error was discovered
concerning the clock signal used to control the latch for the
scan path input pad. Instead of specifying sampling during
rhase_tb of the local scan path clock, the genesil default of
rhase_a of the global system clock was accepted as the
controlling clock signal. The result of this design oversight
>3 the negation of the ability to conduct scan-in operations
for the scan path at either a rate faster then the global
system clock or when th=2 global system clock is not operating.
Since this ability was part of the reason for choosing the

TLATCHL type Testability Latches, this error was quite costly
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in terms of available chip operational performance character-
istics.

Lastly, decisions were made concerning the output
pads. Output pads also have options concerning the presence
or absence of latches. Again a transparent latch option was
chosen to help ensure that the final results presented off
chip would be stable for at least half a clock cycle. The
transparent latch for output pads samples values during
phase_a of its controlling clock and holds values during
phase b [Ref. 16:p. 5-39]. The controlling clock signals were
correctly specified for the output pads. The output pads for
the correlated results have their latches controlled via the
global system clock. The scan path output pad latch uses the
local scan path clock like it should thus allowing scan-out
operations to proceed either at a faster rate then that of the
global system clock or during periods that the global system
clock is not operating. Finally, Genesil offers options on
the drivespeed available for the output pads. The choice
which can be made is dependant upon the number of VDD/VSS
pairs present to provide ring power. A single pair as in the
DFT _CHIP can drive six output pads at very high speed, 12 pads
at high speed, 20 pads at low speed, or 40 pads at very low
speed [Ref. 16:p. 5-37]. Since only six output pads exist for

the DFT_CHIP, the very high speed DRVSPEED3 option was chosen.
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C. SIMULATION AND TIMING ANALYSIS

Genesil's ability to perform simulation and timing
analysis provides a convenient means to evaluate and analyze
chip performance and functionality characteristics during the
design process. Simulation and timing analysis are indepen-
dent operations within Genesil's working environment. Both of
them can and should be used during the entire design process
for a chip. By performing analysis on individual modules
before combining them into a chip design, timing or logic
functionality errors can be easily debugged. Upon completion
of a chip design, simulatior and timing analysis provide a
final verification that the design performs as desired.

1. Simulation

Simulation within Genesil is the process by which a
chip design is evaluated to verify that both the implemented
design and the physical layout generated from that design
function as intended. Through the simulation process, outputs
can be checked against a given set or sequence of inputs to
verify that the design is logically correct. Genesil performs
simulation using either a functional model or a switch-level
model.

Simulation done using a functional (GFL) model is a
technology and layout independent process. GFL simulation
utilizes gate-level, zero-delay models of objects within the
design [Ref. 17:p. 2-4]. Technology and layout independence

is achieved by considering only the circuit functionality
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characteristics and changes in input signals rather than
looking at the actual delay times found within a circuit
design [Ref. 17:p. 1-2]. GFL simulation uses a demand-
evaluation algorithm which simulates only the minimum logic
necessary to check for correct results [Ref. 17:p. 2-1]. Only
block definitions and netlisting need to be accomplished prior
to running a GFL simulation test.

In contrast, switch-level (GSL) model simulation is
designed to verify functionality at a switch level once a
particular technology is specified and the object layout is
completed via use of the floorplanning and compilation
processes [Ref. 17:p. 2-2]. GSL simulation uses an event-
driven algorithm which forces any changes caused by an event
to propagate through the design based on detailed timing
information obtained from the Genesil Timing Analyzer for the
particular technology and layout chosen [Ref. 17:p. 2-2]. GSL
simulation is normally used only as a final design verifica-
tion step during the design process.

Simulation operations in Genesil can be done in either
a manual interactive mode or in an automatic control mode.
The manual mode requires that the user specify each input,
manually advance time via cycling the clocking signals, and
individually verify each output. The automatic control mode
allows simulation to proceed without user interaction by
either operating on a set of test vectors which provide input

signals and expected output signals or by using Genesil
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simulation routines called check functions. The automatic
control mode both runs faster than the manual mode and if test
vectors are used can provide error messages to indicate
differences between actual and expected output results
([Ref. 17:p. 1-3].

Check functions in Genesil provide an automated
approach to both simulate circuit operation and to generate
test vector sets. Check functions consist of user defined
simulation routines written in a proprietary Genesil language
called GENIE. The GENIE language provides basic commands which
can accomplish all the needed operations to perform simulation
on an object. Reference 17 Appendix B provides specifications
for the GENIE commands which can be used during simulation.
In the manual interactive mode these commands are issued one
at a time. By combining these basic commands into a check
function routine, a complete simulation task can proceed by
using only the check function name as a command. High level
check functions can also be written which call lower 1level
check functions and individual GENIE commands. This allows
complete simulation procedures to be written for use in a
batch type mode.

If check functions and GENIE commands are used in
conjunction with the traceobj command, test vectors can be
produce from simulation runs. The traceobj command causes all
inputs and outputs obtained from the simulation run to be

captured in a MASM test vector file. The MASM test vector
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file format contains a list of all the inputs presented and
the outputs obtained at each timepoint during the simulation.
This MASM format is the same as that used by the Automatic
Test Generation process. Therefore, test vectors produced via
the simulation process using the traceobj command can be fault
graded in the Automatic Test Generation program. Similarly,
test vectors produced by the Automatic Test Generation Program
can be run in the simulator to verify their correctness.
Finally, test vector files for the physical testing of a chip
design can be obtained by porting the MASM test vector files
to the format needed by a commercial chip tester. Figure 3.15
shows the format of a MASM test vector file.

Simulation results can be presented in either a
numeric mode on the message screen or as a screen-based output
which can show individual signals in both a tabular and
waveform type format. Numeric outputs to the message screen
are obtained by using the RUN_VECTORS command on a set of
simulation test vectors which have already been produced in
MASM file format. To produce screen-based outputs a formatted
screen must be set up for use as detailed in Chapter 4 of
Reference 17. Figure 3.16 and Figure 3.17 are examples of the
message and formatted screen type results which can be
‘obtained.

To accomplish simulation of the DFT_CHIP, check
functions were written and used to allow simulation steps to

progress in an automated manner. Two categories of check
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CODEFILE

INPUTS

CLOCK (clock) , CLOCK2 (clock)} ,DATCON(to=0) , IN_PADS [15:0] (to=0)},
LOAD (to=0) ,M1(to=0)},M2(to=0) ,MSKCON(to=0) ,0UTCON (to=0),
REFCON{to=0),SERIAL_IN(to=0),SPCON(to~0), TESTIN(to=0) ;
OUTPUTS OUT_PADS [4:0], SHIFTOUT;

CODING (ROM)

@0 <0010000000000000000100111000 >...... i
@5 <0110000000000000000100111000 >...... H
@10 <1110000000000000000100111000 >00000. ;
@15 <1010000000000000000100111000 >00000.;
@20 <0010000000000000000101111000 >00000.;
@25 <0110000000000000000101211000 >0CCO0O0. ;
@30 <1110000000000000000101111000 >00000.;
@35 <1010000000000000000101111000 >00000.;
@40 <0000000000000000000100010000 >00000.;
@45 <0100000000000000000100010000 >000000;
@50 <11000000000000000001C0010000 >000000;
@55 <100000000000000000010001G000 >000000;
@60 <0001111111111111111100110000 >000000;
@65 <0101111111111111111100110000 >00000Q0;
@70 <11011111112111111111100110060 >100000;
@75 <10011111111113111111100110000 >100000;
@80 <0001111111112111111100011000 >100000;
@85 <0101111111111111111100011000 >100000;
@30 <1101111111111111111100011000 >000000;
@95 <10011121111111111111100011000 >000000;
@100 <001000000000000000010001000C >000000;
@105 <0110000000000000000100010000 >000000;
@110 <111000000000000000010001G000 >000000;
@115 <101000G000000000000100010000 >000000;
@120 <0010000000000000001100010000 >000000;
@125 <0110006000000000001100010000 >000000;
@120 <11100000000C0000001100010G000 >000010;
@135 <101000C000000000001100010000 >000010;
@140 <00100006000000010010100010000 >000010;
@145 <0110000000000010010100010000 >000010;
@150 <1110000000000010010100010000 >000100;
@155 <101000C0200000100101000200006 >000100;
@160 <001000C00010C100010100010000 >000100;
@165 <011000000010010001010001600C >000100;
@170 <111000€00010010001010001000C >000110;
@175 <1010000000100100010100010000 >000110;
@120 <0010000000100100011100010000 >C00110;
@185 <0110000000100100011100010000 >000110;
@190 <1110000000100100011100010000 >001000;
@195 <1010000000100100011100010000 >001000;
®200 <00100016010001101001000610000 >0010G0;
@205 <0110001001000110100100010000 >001000;
@210 <1111001001000110100100010000 >001010;
@215 <10100010010001101001000610000 >001010;
@220 ¢001001000110100010110C020000 >001010;

Figure 3.15 MASM Test Vector File Format
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Figure 3.16
Simulation Results

Message Screen Style
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IE XS AR R R R R R e A R R R R S R R R R R AR AR SRR

Chip: ~genpooler/vi0ler/DFT_CHIP Functional Simulator
------------------------------ Genesil Version v7.1-----------------ooooooo o

OTIMEPNT DATCON REFCON SPCON IN_PADS OUT_PADS TESTIN SHIFTOUT

o 80 0 0 o FFFF 10 c c
o 8% ¢ 1 0 FOFO 10 0 0
° 90 0 1 0 FOFC o8 0 0
o g& 0 1 o FOFO o8 o 0
o 100 o} 1 o} FOFO o8 Q 0
© 10% 1 o 0 FOOF oe 0 a
o 110 1 o 0 FOOF og o 0
o 115 1 0 0 FOOF 08 0 0
o 120 1 *0 *0 *FOOF  *08 *0 *0
OTIMEPNT CLOCK CLOCK2 MSk.JN SERIAL_IN dfout rfout mfout
o §0 0 0 1 0 0000 0000 FFFF
o &5 0 1 0 0 0000 0000 FFFF
o 90 1 1 0 o 0000 FOF0 FFFF
o 9t 1 0 0 0 0600 FOFC FFFF
0 100 0 0 0 0 0000 FOF0 FFFF
o 105 0 1 | 0 0000 FOFO FFFF
o 110 1 1 G 0 FOOF FOFO FFFY
o 115 1 0 0 0 FOOF FOFO FFFF
o 120 *0 "0 *0 *0 *FOOF *FOF0 *FFFF
25 30 25 40 4. 50 55 60 €5 70 75 80 &5 90 95 10 10 11 11 12
o 5 0 5 0
LRI S R A 4 R I R AR LRI SR St A SR JESRE SRR SRR St SR S
CLOZY - + 4o + +e-- - + e + - +
-t .- + +em e + +- - - + 4o .- + +- -
CLCCEZ  -ee-- - e + R + e . 4o +
+-m- - + - - - + .- + +--- - + LRI
4. + o + LRI + R + +-e--
phase ta - --- + LR + 4. + R “+ o +
+- - + +----- + - + -+ - LR
phase_t}: s + o + .- + + e e s
----- + oo - - + - 4 e LRI
INSERT MESSAGES GRAPHICS FORM OVERLAY KECORD UTILITY
BACK QUERY HIEK_LEVEL ENVIRONMENT NEWSCREENS
BIND CYCLE RUYN_VECTORS SCKOLL PICK_SCREEN
ASSEFT STEP UNBIND FIGHTS FORMAT SCREEN
PROPAGATE VERIFY_VALUE
>SIMULATION”

Figure 3.17 Formated Screen Sty’e Simulation Results
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functions were written. Basic building block type check
functions vere written to accomplish limited simulation tasks.
These check tuiictions are also convenient for use during manu-
al interactive simulation sessions. High level check func-
tions were then written to automatically accomplish a complete
simulation test by sequentially calling a set of the basic
check gunctions.

The f[ollowing basic building block check functions
were written and used during simulation on the DFT_CHIP:

1. MSP - tunction to set the mask register values in a
parallel manner.

2. RSP - function to set the reference register values in
a parallel manner.

3. DSP - function to set the data register values in a
parallel manner.

4. TS8S - function to serially load 32 bits of data into the
scan vath.

5. T& - function to serially load one to 32 bits of data
irto the scan path.

6. 88 - function to serially shift data into the data,
reference, and mask registers and optionally at the same
time load data into the scan path.

7. force_in - function to force values from the scan path
latches into the Adata latches of the testability
latches.

8. swap in - functioun tc swap the contents of the data and
scan path latches in the testability latches.

9. sample_in - furction to sample and replace the scan path
latch values w.ith the data latch values in the testabil-
ity latches.

10. LS® - function used to assign the next kit of data which
will be serially loaded via the serial input pin.
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11. tog - function to set up toggle patterns for the clock
signals.

12. untog - function to untoggle the clock signals.
The complete GENIE language code written for these check
functions is contained in Appendix A.
Complete functional simulation testing of the DFT_CHIP
was accomplished using the following high level check func-
tions:

1. 1initall - function to iritialize the values present at
all input and output pins of the chip.

2. test_parallel_in - function to test the chip during
parallel load operations.

3. test_serial_in - function to test the chip during serial
load operations.

4. test force - function to check force operations after
serial loads of the scan path.

5. test_scan _clock - function to test the ability to
operate the local scan path clock at a faster rate than
the global system clock and to test the ability to
conduct scan path operations during periods that the
global system clock is not operating.

Each of these functions includes the traceob) command to
produce MASM test vector files. The complete code written for
these check functions is contained in Appendix B. These check
functions were used to verify the functional operation of the
chip using both GFL and GSL models. The results from these
sirnlatlicn operations indicated that the DFT_CHIP would
function as desired once it was fabricated.
2. Timing Analysis
Genesil's Timing Analyzer feature provides an easy to

use means of evaluating the timing characteristics and
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relationships of a chip design. It uses algorithms, which do
not need or make use of test vectors, to produce reports on
the following timing characteristics [Ref. 18:p. 1-1]:

Maximum operating speed

Speed limiting paths within the design

Constraints on duty cycles

Input setup and hold times

Output delays

Signal delays, setup, and hold times for internal nodes

Path delays between internal nodes.
Through an examination of these reports cananges can be made to
a design to help insure that it will operate without timing
problems. Also, this information can be used to optimize chip
speed performance for a design which is required to operate in
an environment needing a specific minimum operating frequency.

For the DFT_CHIP design the main use of the Genesil

Timing Analyzer was to verify that there were no timing
relationship conflicts and to determine the anticipated
maximum operating frequency for both clock signals on the
chip. Since chip size not operating frequency became an
overriding design criteria, the timing information was not
used to redesign the chip layout to provide increased chip
speed. However, it was used to gain information on the
maximum anticipated clock frequencies. These clock frequen-
cies were then specified for the clock signals during the
‘netlisting process. Doing this insured that the compilation

process would produce a fabrication lavout able to handle the

maximum clock frequencies calculated by the Timing Analyzer
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for the specific signal paths and internal components of the
DFT_CHIP.

Three specific Timing Analyzer reports were looked at
for the DFT_CHIP. First, the CLOCKS command was issued to
generate a Clock Report. This report provides details on the
maximum operating frequency and duty cycle limitations for a
particular clock signal. 1Included is information on the
minimum high phase times for the internal nonoverlapping phase
signals derived from the clock signal, the minimum nonsymmet-
ric and symmetric clock signal times, and details concerning
the worst case paths for each of the phases of the clock
signal [Ref. 18:p. 5-4]. Second, the SETUP_HOLD command was
used to generate a Setup and Hold Mode Report which indicates
the setup and hold times needed for each input signal relative
to the falling edge of the clock signal [Ref. 18:p. 6-1].
Finally, the VIOLATIONS command was issued to produce a
Violations Report which indicates if any internal hold time
violations exist for the design configuration produced

(Ref. 18:p. 11-1]. It is a Genesil regquirement that a

Viclations Report be generated and checked for all Genesil
chip designs prior to design tapeout for fabrication to insure
that the design will not experience internal timing problems
after return from fabrication [Ref. 18:p. 11-1].

Since there are two different clock signals utilized
for the DFT_CHIP, all three timing analysis reports had to be

run twice. Based on the information obtained from these
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reports the maximum expected operating frequencies for the
DFT_CHIP were 4.43 MHz for the global system clock signal
CLOCK and 28.6 MHz for the local scan path clock signal
CLOCK2. Appendix C provides the complete timing analysis

reports generated for both clock signals.

D. AUTOMATIC TEST GENERATION AND FAULT COVERAGE

The usage of Genesil's Automatic Test Generation (ATG)
feature was extremely important to the work done for this
thesis. It allows an exploration into the need for and
effects of including DFT features in a chip design. The ATG
feature provides a method to automatically generate test
vectors which will uncover defects that occur due to the
manufacturing (not design) process. ATG looks at manufactur-
ing defects in terms of stuck-at 0 and stuck-at 1 faults. By
running ATG for an object under design, test vectors are
developed to uncover these stuck-at faults. Through a process
of fault grading, ATG also determines the fault coverage for
the test vectors it develops. When properly enabled, the ATG
feature will produce a set of maximum possible fault coverage
test vectors for the current design configuration of the
object being developed. Therefore, by examining the achiev-
able fault coverage level for an object, the effects of
including DFT features into a design are quickly determined.
(Ref. 19:p. 1-1)

Genesil produces its fault coverage results through use of
the classical D algorithm. This algorithm provides an algebra
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for simplifying the computational tasks of testing for faults
within a design. The D algorithm utilized by Genesil uses a
process called justification to determine the inputs to apply
to the design and a process called sensitization to check the
outputs which will result for a specific sequence of events.
[Ref. 19:pp. 1-2, 1-3]

Justification is related to the controllability of being
able to set the inputs of a gate to specific values. The ATG
justification process places desired values on the gate under
test and then tries to back these values out of the circuit to
primary inputs. If this process of backing the values out of
the design is successful without producing any conflicting
values on the primary inputs then the stuck-at test for that
gate is said to be justified and the inputs to the gate are
determined to be controllable.[Ref. 19:p. 1-4]

Sensitization is closely related to the observability of
a circuit. It is the process of propagating the output of a
gate being tested to a primary output of the circuit. If this
is accomplished then the stuck-at test for the gate is said to
be sensitized and the design configuration allows for observa-
bility of the output node of the gate.[Ref. 19:p. 1-4]

During the ATG process, Genesil first accomplishes an
initial pass over the design to locate any faults which are
obviously untestable and also to develop a testing priority to
conduct tests first on those nodes which have the highest

degree of observability and controllability. To speed the
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test process, ATG uses a modified breadth-first search to look
simultaneously at multiple paths to the primary inputs and
outputs. ATG takes a single step along a given path during an
evaluation of justification or sensitization, checks and puts
the results for that path and step onto a list of pending
processes, and then moves to the next path possible for that
particular step. This causes a gradual expansion of the test
process at each step. By doing this rather than checking just
one path at a time, conflicts caused by any incompatible
assertions, which may result during the justification and
sensitization process, are recognized quicker. This helps to
speed up the rate at which the overall ATG process can be
accomplished.[Ref. 19:p. 1-7]

The penalty paid for the speed up possible from doing the
breadth-first search is that if a conflict is found ATG has to
retrace its steps all the way to the test assertion that
caused the conflict. Then, all just?“ication and sensitiza-
tion evaluations must be repeated between the point of the
asserti~n and the location at which the conflict was discov-
ered. In doing this, paths not related to the conflict also
are forced into being rechecked. To minimize the amount of
work that needs to be redone, ATG partitions assertions into
different search groups that it organizes based on a determi-
nation of which portions of the circuit are independent from

each other. Therefore, a conflict in one search group does
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not extend the need to rework justifications or sensitizations
into another search group.[Ref. 19:p. 1-8]

Since the test algorithm used by the ATG process is trying
to back justifications out of or propagate sensitizations
through a circuit, sequential logic may present problems
during the development of a test strategy. To handle sequen-
tial circuits the ATG process utilizes a method called time
unrolling. This method has the effect of translating sequen-
tial circuit elements into combinational circuit elements that
are examined over a restricted time range. This translation
process can be viewed as producing a three dimensional set of
combinational circuits where the third dimension is related to
the number of timepoints that originate from the feedback path
of the sequential circuit. The time window for the number of
timepoints considered during the ATG process may be either a
default based on Genesil's determination of the sequential
depth of individual nodes in the object or it may be limited
to a user specified number. The higher the number the slower
the ATG process will proceed, but a higher number may produce
a greater fault coverage or a denser maximum fault coverage
test vector set.[Ref. 19:pp. 1-6, 1-7]

To run the ATG process on an object the following parame-
ters from the ATG Control section of the ATG form must first
be specified:

1. Output File - specifies the file to which the test
vectors produced by ATG will be written.
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10.

Sequential Depth - determines the maximum number of
timepoints which can be used to try and instantiate a
specific fault test. Using the parameter of -1 provides
a default for each node based on the shortest path from
the node to a primary output.

Random Input Vectors - determines the number of random
seed vectors the ATG process will generate and use as
inputs. Using random input vectors may speed up the ATG
process. Choosing a parameter of -1 will provide the
same number of random vectors as the maximum sequential
depth found in the object.

Initialization Vectors - determines the number of
vectors from the Input File which will be run as
simulation only to provide an initialization effect for
the object. These vectors will not be included in the
output test vector file. Any remaining vectors from the
Input File will have the normal ATG process run on them.

Default Toggles - determines if the default toggle
definition will be used for the clock signal in the
circuit. Selecting NO will cause the clock toggle
definition to be obtained from the Startup File if it
exists.

Limit Time - determines the time limit (in CPU time
usage) for which the ATG process will run. Selecting NO
specifies unlimited time (although the ATG process may
still quit if it is not able to instantiate a fault test
after running a large number of test vectors).

Limit Coverage - selecting YES and specifying a fault
coverage value will halt the ATG process when that fault
coverage value has been obtained. Selecting NO indi-
cates a default of 100 percent fault coverage.

Fault Grade Only - selecting YES allows the previously
generated set of MASM test vectors specified as the
Input File to be fault graded.

Enable Input File - selecting YES and specifying a file
name provides the file to be used during either the
initialization process or the file to be fault graded.

Enable Startup File - must be selected as YES and have
the Startup File name provided for cases where the
Default Toggles parameter is set to NO. The Startup
File contains the clock toggle definitions which will be
used to replace the default toggle definition. All
chips with two or more clocking regimes must specify the
clock toggle definitions in a Startup File. Reference
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19, Appendix B provides examples of the toggle defini-
tions which can be written for chips with multiple
clocking regimes.

11. Enable DFT File - determinres if a DFT file will be used
to specify artificial primary inputs, outputs, and no
connects. This feature allows the designer to specify
additional inputs and outputs at internal circuit
locations during the initial design process to help
determine if including DFT features will raise the fault
coverage possible. Select NO for this parameter for
final chip testing using the ATG process.

12. Enable Coverage In - selecting YES causes the ATG
process to consider a coverage map from a previous ATG
run when it starts the present run. Coverage maps are
files which provide the ATG process information on which
faults remain to be tested in a design.

13. Coverage Output File - specifies the name of the
coverage map file to which coverage information will be
written.

Once all ATG Control section parameters are specified the ATG
process is started by selecting RUN_ATG from the menu of the
ATG form.[Ref. 19:pp. 4-4 - 4-7]

Once the ATG process is running its current status can be
displayed in the ATG Status section of the ATG form. To
update the status to the present time select the UPDATE_SCREEN
choice from the ATG form menu. As an alternative, the status
can be continuously updated and displayed by issuing the
command update_loop at the ATG form command line prompt
(Ref. 19:p. 4-11]. The ATG process runs in the background.
This allows other Genesil activities to be performed while
waiting for ATG to complete unless the status is continually
being updated via the update loop command [Ref. 19:p. 4-2].

Figure 3.18 shows a complete screen view of the ATG form, to
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Chip: ~genpooler/pooler/DFT_CHIP ATG Control Program

---------------------------- Genesil Version v7.1--------c-c--mmiomiaaon
ATG Control

Output File: > maxcov_example
Sequential Depth: > -1
Random Input Vectors: > -1
Initialization Vectors: > 0
Default Toggles: NO|YES
Limit Time: {NOIYES
Limit Coverage: 'NC|YES
Fault Grade Only: {NO]YES
Enable Input File: [NOlYES
Enable Startup File: NO [YES
Startup File: > clocks
Enable DFT File: [NO]YES
Enable Coverage In: [NO]YES
Default Coverage Out: NO YES
ATG Status
Vector Tests CPU Time (h:m:s)
Change Tested Percent Change Total
10 9 224 10.48 10 1:37
11 5 229 10.71 23 2:00

Command Status

ATG running

INSEPT MESSAGES GRAPHICS | FORM - OVERLAY RECORD UTILITY
nop CHECK_FORM RUN_ATG DUMP_COVERAGE  UPDATE_SCREEN
ACCEPT_FORM SAVE HALT_ATG EDIT_STARTUP VIEW_LOG
PIGEONHOLE TEXT_SPEC KILL_ATG EDIT_DFT ANALYZE
CANCEL ENABLE_CURRENCY
ATG

Figure 3.18 ATG Form Screen Display
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include the ATG Control and Status sections, for an example
case of running ATG on the DFT_CHIP.

Upon completion of the ATG process (through either
expiration of the specified time 1limit, achievement of the
specified fault coverage level, or completion of fault grading
for an input test vector set) the final results can be
examined in depth by selecting the ANALYZE command from the
ATG form menu. If the ATG process has not yet finished, it
can be forced to stop by choosing the HALT ATG command from
the ATG menu. The ANALYZE command will then provide results
based on all tests made prior to the halt being issued. Once
ANALYZE is chosen a new menu is presented which allows the
fault coverage statistics to be examined from the top level of
chip down to the individual gate level. At the gate level the
individual stuck-at faults which have or have not been tested
are listed. Examination of this information provides the
details on what portions of the design contains gates which
the ATG process has not been able to fault test. Based on
this information the design can be modified or DFT features
can be included to raise the fault coverage obtainable.
Figure 3.19 is an example for the DFT _CHIP of the format and
type of infcrmation which can be provided by using the ANALYZE
command. [Ref. 12:p. 5-2]

The starting use of the ATG feature was to look at the
characteristics of the BASIC_CHIP design. First, the ATG

process was run, with no limits on either time or fault
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FAULTS
)} / (module): 2003 tests out of 2137 (93.7295%)
combiner2 (module): 74 tests out of 80 (92.5%)
AND5 (module): 2 tests out of 3 (66.6667%)
and (AND): 2 tests out of 3 (66.6667%)
XOR6 (module): 3 tests out of 4 (75%)
xoxr (XOR): 3 tests out of 4 (75%)
XOR4 (module): 2 tests out of 4 (50%)
xoxr (XOR): 2 tests out of 4 (50%)
XOR2 (module): 3 tests out of 4 (75%)
xor (XOR): 3 tests out of 4 (75%)
XORO (module): 3 tests out of 4 (75%)
xor (XOR): 3 tests out of 4 (75%)
serial_input (module): 2 tests out of 4 (50%)
idatala_b[0] (LATCHM): 2 tests out of 4 (50%)
ref_in (module): 2490 tests out of 259 (92.6641%)
refcontrol (module): 2 tests out of 3 (66.6667%)
ANDO (module): 2 tests out of 3 (66.6667%)
and (AND): 2 tests out of 3 (66.6667%)
refl (module): 118 tests out of 128 (92.1875%)
DFFé (module): 11 tests out of 12 (91.6667%)
ctl_y[0] (LATCHM): 3 tests out of 4 (75%)
DFF1 (module): 11 tests out of 12 (91.6667%)
ctl_y (0] (LATCHM): 3 tests out of 4 (75%)
DFFS (module) : 11 tests out of 12 (91.6667%)
ctl_y{0] (LATCHM): 3 tests out of 4 (75%)
DFF0 (module): 9 tests out of 12 (75%)
ctl y[0] (LATCHM): 3 tests out of 4 (75%)
data_y[0] (LATCHM): 2 tests out of 4 (50%)
DFF4 (mcdule): 11 tests out of 12 (91.6667%)
ctl_y[0] (LATCHM): 3 tests out of 4 (75%)
DFF2 (mw.dule): 11 tests out of 12 (91.6667%)
ctl_y (0] (LATCHM): 3 tests cut of 4 (75%)
DFF3 {(module): 11 tests out of 12 (91.6667%)
ctl y[0o] (LATCHM): 3 tests out of 4 (758)

DFF7 (module): 11 tests out of 12 (91.6667%3
ctl_y (0] (LATCHM): 3 tests out of 4 (75%

ref2 (module): 120 tests out of 128 (93.75%)
DFF10 (module): 11 tests out of 12 (91.6667%)
ctl_y.2] (LATCHM): 3 tests out of 4 (75%)
DFF9 (module): 11 tests out of 12 (91.6667%)
ctl_y(0] (LATCHM): 3 tests ocut of 4 (75%)
DFF13 (module): 11 tests out of 12 (91.6667%)
ctl_yl{0] (LATCHM): 3 tests out of 4 (75%)
DFF8 (module): 11 tests cut of 12 (91.6667%)
ctl y[{0] (LATCHM): 3 tests out of 4 (75%)
DFF12 (modulr): 11 tests out of 12 (91.6667%)
ctl_y[0] (LATCHM): 3 tests cut of 4 (75%)
DFF14 (module): 11 tests out of 12 (91.6667%)
ctl_y(0} (LATCHM): 3 tests out cf 4 (75%)
DFF11 (module): 11 tests cut of 12 (91.6667%)
ctl_y{0] (LATCHM): 3 tests out of 4 (75%)
DFF15 (module): 11 tests cut of 12 (91.6667%)
ctl_y{0] (LATCHM): 3 tests cut of 4 (75%)
load (module): 2 tests out of 4 (50%)

e e A e e M S e et e e St o o e et o i e o e ar N

idatala_b(0]) (LATCHM): 2 tests out of 4 [50%)
tlatch32 (module): 683 tests out of 706 (96.7422%)
TLATCHL1 (module): 342 tests out ¢f 353 (96.8835%)

a (NOR): 2 tests out of 3 (66.6667%)

ca (LATCHM): 2 tests out of 4 (50%)

cb (LATTHM): 2 tests out cf 4 (50%)

cf (LATCHM): 2 tests out of 4 (50%)

cs (LATCHM): 2 tests out of 4 (50%)

1d_y (0] (LATCHM): 2z tests out of 4 (50%)

TIATCRLO (module): 341 tests out of 353 (96.6006%)

a (NOR): 2 tests out of 3 (66.6667%)

ca (LATCHM): < cests out cf 4 (50%)

cb (LATCHM): 2 tests out of 4 (50%)

cf (LATCHM): 2 tests out cf 4 (508%)

Figure 3.19 Fault Coverage Information Obtainable
from using ANALYZE Command
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coverage, to determine the maximum fault coverage obtainable
for the design without DFT features. Once the test run
reached a stage where additional test vectors were producing
no increase in fault coverage the program was halted and the
coverage obtained was examined using the ANALYZE command.
Table IV presents the fault coverage results for BASIC_CHIP
design in terms of its individual modules. Also included is
the number of test vectors needed to achieve the fault
coverage listed. The results listed for $dummy come from a
dummy module that the ATG process creates to contain artifi-
cial/dummy constructs used during the evaluation of certain
types of Genesil blocks [Ref. 19:p. E-5]. These dumnmy
constructs are needed to account for differences between the
models generated by the Genesil simulator and the additional
internal nodes created by the mapping of these models into the
primitives used by Genesil during the ATG process. Therefore,
the Sdummy results need to be included and considered when
evaluating the fault coverage of a complete, top-level design.

As can be seen from Table IV, the modules with the lowest
fault coverage were the combiner, input pad and $dummy modules.
Since the $dummy module is based on a mapping of the simula-
tion models for Genesil blocks to the primitives used by ATG,
there is no way to identify how to improve this module's fault
coverage without changing the components of the circuit
design. Similarly, the fault coverage for the input pad

modules is a function of the pad specifications and was not
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TABLE IV

ATG FAULT COVERAGE RESULTS FOR BASIC_CHIP DESIGN

Module

Faults Tested

Fault Coverage %

m

adder 146 of 155 94.1935
combiner 160 of 192 83.3333
data_in 240 of 259 92.6641
mask_in 240 of 259 92.6641
output 15 of 15 100.0000
ref in 240 of 259 92.6641
xnorreg 112 of 112 100.0000
input pads (all) 46 of 88 52.2727
output pads (all) 20 of 20 100.0000

S$dummy 8 of 44 18.1818
BASIC_CHIP Total 1227 OF 1403 87.4555

Total test vectors used: 530
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observed to change unless the type of input pads utilized was
changed.

For the combiner module the ANALYZE command was selected
and this module was looked at down to the gate level to try
and determine which gates were not being completely tested.
Based on this examination it was found that each of the four
identical combiner module sections, used to convert a 4-bit
wide slice of results coming form the xnorreg module output to
a 3-bit number representing the sum of correlated bits, had
the same gates with faults not tested. These are the gates
labeled ORO, OR1l, XOR4, XOR5, AND4 and ANDS in Figure 3.4.

Knowing which gates were not being ~completely tested, a
decision could be intelligently made about where to place a
scan path to help increase fault coverage for the combiner
module. As previously discussed, the DFT_CHIP design was made
by inserting a scan path made from testablilty latches in
between portions of the original combiner module. As shown in
Figure 3.5, the insertion location of the scan path in the
combiner module was just prior to the incompletely tested
gates along the direction of circuit propagation. It was
hoped that by being able to scan in specific test vector
sequences the ATG process would now be able to fault test some
of the previously untested gates.

The ATG feature was then used to determine the fault
coverage possible for the DFT_CHIP design. The results for

the ATG test run, obtained using the ANALYZE command as per
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Figure 3.19, are shown in Table V. As indicated, the inclu-
sion of the scan path had a positive effect in several areas.
First, the fault coverage for those gates not completely
tested in the combiner module of the BASIC_CHIP design went
up. The DFT_CHIP design was now able to test for faults oo
all of the gates from the combinerl module and 92.5 percent of
the gates from the combiner2 module. Since the sum of these
two modules contains the same exact gates found originally in
the combiner module of the BASIC_CHIP design, the result of
including the scan path was to increase the fault coverage for
the total combiner gates from 83.3333 per ent to 96.8750
percent. Next, the scan path was able to raise the fault
coverage for both the adder module (which is downstream in
terms of circuit propagation from the scan path) and the
$dummy module to 100 percent. Most importantly, the overall
fault coverage of the complete chip was raised from 87.4555
percent in the BASIC _CHIP design to 93.7295 percent in the
DFT_CHIP design. Finally, the inclusion of the scan path not
only raised the fault coverages obtainable but also lowered
the number of test vectors needed to obtain the maximum fault
coverage. It took 530 test vectors to obtain the maximum
possible fault coverage for the BASIC_ CHIP design but only 363
test vectors for the DFT_CHIP design.

Based on these results, the inclusion of the scan path had
a considerable effect on the testability of the correlator

chip. Due to the decreased number of test vectors needed to
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TABLE V

ATG FAULT COVERAGE RESULTS FOR DFT_CHIP DESIGN

Module Faults Tested Fault Coverage %
= T
adder 155 of 155 100.0000
combinerl 112 of 112 100.0000
combiner?2 74 of 80 92.5000
combiners 1 and 2 186 of 192 96.8750
data_in 240 of 259 92.6641
mask_in 240 of 259 92.6641
output 15 of 15 100.0000
ref_in 240 of 259 92.6641
tlatch32 683 of 706 96.7422
Xxnorreg 112 of 112 100.0000
input pads (all) 56 of 104 53.8462
output pads (all) 24 of 24 100.0000
Sdummy 52 of 52 100.0000
DFT_CHIP Total 2003 of 2137 93.7295
Total test vectors used: 363
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obtain maximum possible fault coverage, the time used for
testing of the DFT_CHIP after fabrication should be minimized.
Perhaps more importantly, the increase in the overall fault
coverage should lower the defect level found among chips that
successfully pass the testing process. Using equation (1.7)
as a basis for determining defect level, Figure 3.20 shows a
plot of the defect levels for varying yields using the maximum
fault coverage percentages of the BASIC_CHIP and DFT_CHIP
designs. This shows graphically the gain, in terms of lower
defect levels for the same yield, obtained from including a
scan path in the design.

It should be noted that there are also two main penalties
incurred by including the scan path which are representable of
the effects of including a DFT structure into any design.
First, the scan path itself introduces gates into the design
which then have to be fault tested. The difference between
the BASIC_CHIP design and the DFT_CHIP design was the inclu-
sion of gates resulting in an additional 734 faults to test.
For the correlator chip design this was over a 50 percent
increase. A more complex design would have a smaller percent-
age increase for a scan path with the same number of test-
ability latches but it could still be significant. A more
complex design might also need more testability latches to
produce a scan path able to raise fault coverage to a desired
level. Secondly, the inclusion of a DFT feature like a scan

path incurs a size penalty for the chip layout due to the
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additional gates needed. Since the BASIC CHIP design was not
optimized for size the same way the DFT_CHIP design was, no
direct comparison can be made for these two cases. However,
the size increase will be related to the number of additional
gates used to include a DFT feature. Therefore, within an
order of magnitude, the percentage increase in gates should be
related to the percentage increase in total chip size.
Additional penalties which might be experienced for including
a DFT feature like a scan path include additional power
consumption and possible lower limits on maximum clock speed.

The final use of the ATG feature was to look at the fault
coverage levels obtainable from the test vectors used to check
the functionality of the DFT_CHIP desigo. Each of the MASM
test vector files produced during the simulation process using
the four high level check fuoctions (test_parallel in,
test_serial_in, test force, and test_scan_clock) were fault
graded using the ATG feature. Table VI shows these results.
The results show that test vectors which are used to check the
proper logic or functionality operation of a chip may not be
very good for insuring a high degree of fault coverage. This
demonstrates the need to test a chip using test vector sets
which both look at the functionality issue and those which

‘provide the maximum possible degree of fault coverage.
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TABLE VI

ATG FAULT COVERAGE RESULTS FOR DFT_CHIP USING
CHECK FUNCTION PRODUCED TEST VECTOR SETS

Check Functions

Faults Tested

w

Fault coverage %

test_parallel_in 848 of 2137 39.6818
test_serial in 929 of 2137 43.4722

test force 725 of 2137 33.9261
test_scan_clock 408 of 2137 19.0922
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IV. FABRICATION AND TESTING

Once a Genesil chip design has been completed (including
all aspects of floorplanning, simulation testing, timing
analysis, ATG processing and final compilation) it is ready to
be sent for fabrication. This chapter first examines the
steps taken to have the DFT_CHIP design fabricated through the
MOSIS Service. Upon completion of fabrication, chips need to
be tested to both validate that no functional errors exist in
the design and that no manufacturing errors occurred during
the fabrication. The second section of this chapter provides
details on the test gear and testing process used to conduct

this testing on fabricated copies of the DFT CHIP design.

A. FABRICATION METHODOLOGY

The DFT_CHIP design produced for this thesis was fabricat-
ed through use of the MOSIS Service. MOSIS stands for MOS
Implementation System and the MOSIS Service provides fabrica-
tion services to university classes, government agencies and
government contractors under sponsorship of the Defense
Advanced Research Projects Agency (DARPA) and the National
Science Foundation (NSF) [Ref. 20:p. 3]. The MOSIS Service
provides an inexpensive means of fabrication for standard cell
and full-custom VLSI designs using 3.0, 2.0, 1.6 and 1.2
micron double metal CMOS technologies [Ref. 20:p. 1].
Multiple fabrication line vendors are utilized to manufacture
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designs, and costs are kept down for MOSIS users by combining
projects from several users onto a single wafer during
fabrication runs [Ref. 20:p. 1]). Instead of paying between
$50,000 and $80,000 for a complete wafer lot to be produced,
users pay for only that percentage of the silicon space on the
wafer that their designs occupy resulting in chips which can
be fabricated for as little as $400 [Ref. 20:p 1].

Actual charges for chip fabrication depend on which of the
four MOSIS size categories the chip falls into. The four
MOSIS size categories and the maximum sizes allowed for them
are: tiny (2.3mm by 3.4mm), small (4.6mm by 6.8mm), medium
(6.9mm by 6.8mm) and large (7.9mm by 9.2mm). As previously
discussed, the DFT_CHIP design was limited to fitting within
the MOSIS small size category due to budget constraiits.

For Genesil designed chips being sent to MOSIS for
fabrication there are *wo steps which must be taken prior to
final compilation that differ from normal Genesil design
practices. The first step involves the placement of pads for
the chip during the pinout process of floorplanning. MOSIS
highly recommends that designs should have the same number of
pads located on all four sides of the cavity well, and that
along each side the pads should be spaced approximately the
same distance apart. This placement configuration may be
slightly stricter than that encountered for designs not being
fabricated through MOSIS. MOSIS requires this type of

placement to insure that the bonding wires to the pads will
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.ot be excessively long, cross, or be at too great a bonding
angle. Secondly, a Genesil chip design sent to MOSIS should
have the NO_PACKAGE option chosen for it in Genesil vice
choosing a package type and attaching the bonding wires during
pinout as is normally done.

MOSIS will have all chips submitted for fabrication
packaged and will provide a bonding diagram with the fabricat-
ed chips. The package type used by MOSIS depends on the
number of pins the submitted chip design has. Dual In-line
Packages (DIP) are used for 28, 40, or 64 pin designs, and Pin
Grid Array (PGA) packages are used for 84, 108, or 132 pin
designs [Ref. 20:p. 57]. Additional information on MOSIS pad
placement requirements and packaging practices is contained in
Chapter 9 of Reference 20.

Once a Genesil design has been completed there are several
additional tasks which need to be accomplished before submit-
ting the design to MOSIS f r fabrication. First, an account
must be established with MOSIS to pay for the fabrication
services. Universities which teach VLSI design may apply for
government sponsored funding of their VLSI design projects
[Ref. 20:p. 127. This funding method was used for the
DFT _CHIP design with funding being obtained via the NSF.

Secondly, the MOSIS fabrication schedule must be checked
to find a fabrication run being done using a fabrication line
technology available in Genesil. MOSIS fabrication runs occur

approximately every two weeks with runs alternating between
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3.0 and 2.0 micron feature sizes and p-well and n-well
technologies. MOSIS has 1.6 and 1.2 micron feature size runs
on-demand as enough projects to fill the runs are received.

Genesil offers over 20 different combinations of fabrica-
tion line vendors, feature sizes (ranging from 1.0 to 3.0
micron), and n-well or p-well process to choose from. A match
must be made between a vendor, feature size and process type
of a fabrication run scheduled by MOSIS and the same combina-
tion from among the Genesil choices. Since the MOSIS fabrica-
tion schedule does not list the fabrication line vendor which
will produce a run, a phone call must be made to MOSIS to
obtain this information.

Having determined a match between a technology combination
available in Genesil and also scheduled by MOSIS, the Genesil
design must be completely recompiled in the chosen fabrication
line technology 1if a different technology was previously
specified. It should be noted that this can have an effect on
the size and operating speed of a design so ideally a match
should be determined early in the design process. Doing so
will avoid the need to review the chip parameters once a chip
design is completed. If a change must be made for the
fabrication line technology, the only penalty within Genesil
is the several hours of CPU time needed to completely recom-
pile the chip. No other changes are needed within Genesil to
change from one fabrication line technology to another. The

compiled design layout produced by Genesil will utilize the
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specific design rules for the fabrication vendor of the
fabrication line technology chosen.

Upon completion of these steps the Genesil design must be
exported from the Genesil system into a file which can be sent
to MOSIS. To export a Genesil design the following steps need
to be taken from within the Genesil operating environment.

1. Select the chip to be exported as the current object and
return to the Genesil main menu.

2. Select TOOLING and then TAPEOUT from the Genesil menus.

3. Select SIZING or NO_SIZING. SIZING produces foundry
customized data based on the design rules of the
fabrication line foundry specified while NO_SIZING
produces a generic type layout [Ref. 15:p. 11.18]. Not
all fabrication line vendors utilize sized 1layouts.
Since the present documentation does not provide
information on which fabrication line technologies need
to be sized, a phone call to the Genesil Silicon
Compiler Corporation may be needed.

4. Choose CIF (Caltech Interchange Format) as the file
format to be used to specify the layout. Genesil also
offers GDSII (Calma Corporation GDSII Stream Format) but
MOSIS requires submissions be done using the CIF format.

5. Specify the filename for the CIF file. Genesil will
then create the CIF file within the Genesil environment
as elther a type HCF file (for unsized CIF) or a type
CIF file (for sized CIF).

6. Export the file from the Genesil environment by select-
ing ANCILLIARY_FILE, EXPORT_FILE, choosing the file to
export, and providing a filename to which the exported
file will be written.

These steps will result in a CIF file of the chip design being
‘exported to the UNIX directory from which Genesil was started.

The final step to be taken before submitting the design is
to run the CIF file through the MOSIS CIF_CHECKSUM program

which can be obtained from MOSIS in "generic" C source code
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format. The purpose of the CIF_CHECKSUM program is to compute
a checksum for the CIF file to help insure the accuracy of
transmission process used to send the file to MOSIS. Due to
the large size of CIF files (918K for the DFT_CHIP design) and
the catastrophic result of errors, MOSIS requires that the
checksum value be computed and provided along with all design
submissions.

All interaction with MOSIS is normally done using elec-
tronic mail via the INTERNET computer network. Electronic
mail correspondence to MOSIS must be done using formatted
messages. This includes requests for information, identifica-
tion of project information, submission of CIF files and
requests for project status. Chapters 4 and 13 of Reference
20 give specifics on the means and message formats which must
be used during communications with MOSIS.

Genesil produced chips have layouts based on specific
fabrication line design rules vice the MOSIS scalable design
rules. The project information message must indicate that
specific fabrication line design rules were used by stating
the fabrication line technology chosen (VTI_SCI for the
DFT_CHIP which used a VLSI Technologies, Inc. fabrication
line) on the TECHNOLOGY line of the message. This information
should also be noted by including a statement in the ATTENTION
field that the chip was produced using fabrication 1line

specific design rules.
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To fabricate the DFT_CHIP design through MOSIS, all the
steps discussed in this subsection were followed. Based on
the MOSIS fabrication schedule, the VTI-CN20A 2.0um n-well
process from VLSI Technology, Inc. was chosen as the fabrica-
tion line technology for the chip. Based on this choice, the
key parameters listing developed by Genesil for the DFT_CHIP
design is shown in Figure 4.1. MOSIS was able to fabricate
and return the DFT_CHIP design within eight weeks of the
original design submission. The cost of chip fabrication was
$2200 for 12 copies of the chip. Figure 4.2 is a reproduction
of a picture taken by MOSIS of the actual chip which was

fabricated.

B. TESTING METHODOLOGY

The final step undertaken in the development process for
this thesis was the physical testing of the chips which were
fabricated via MOSIS. Only by actually applying signals to a
chip and observing its outputs can the functionality require-
ments and fabricated implementation of the design be finally
validated. During the testing process, test vector sets were
applied to the fabricated DFT_CHIP design to both verify the
operational functionality of the chips and to check for
improper chip operation which could have originated from
errors during the fabrication process. Testing for operation-
al functionality was used to validate the Genesil simulation
results previously obtained for the chip. Testing for any
manufacturing errors which occurred during fabrication was
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Key Parameters for Chip ~genpoocler/pooler/DFT_CHIP

TIME = Thu Jun 7 17:39:59% 1990

ROUTE_VERSION = 87.20
HEIGHT = 260.9 MILS
( = 6626.85 u )
WIDTH = 179.1 MILS
( = 4549.14 u )
ROUTED = 1 (0=NO,1=YES)
TOTAL_WIRE_LENGTH = 83352 MILS
( = 2117140. u )
CORE_AREA = 24749.0 SQUARE_MILS
("= 15967065. uz )
PADRING_AREA = 21981.0 SQUARE_MILS
( = 14181262, u2 )
PAD_AREA = 17934.7 SQUARE MILS
(= 11570750. u2 )
ROUTE_AREXR = 12936.0 SQUARE_MILS
( = 834£789.9 uz2 )
PERCENT_ROUTING_OF_CORE = 52 #%
PERCENT_ROUTING_OF_CHIP = 27 %
PERCENT_CORE_OF CHIP =52 %
PERCENT_| " PADKING_( OF_CHIP = 47 &
PERCENT | _PAD_OF_PADRING = 81 %

NETLIST_VERSION = 1.0
NETLIST EXISTS = 1 (0=NO,1=YES)

PHASE_A_TIME » 113.0 NANOSECONDS

PHASE_B_TIME = 40.0 NANOSECONDS
SYMMETRIC_TIME =~ 225.9 NANOSECONDS

NUMBER OF _TRANSISTORS = 5045

POWER DISSIPATION = 73.04 MILLIWATTS_@SV_10MH2Z

ROUTE_ESTIMATE_LVL = 0
FLAT_ROUTE = 0 (0=NO,1-YES)
TECHNOLOGY_NAME = CMOS-1
PACKAGE_SPECIFIED = 1 (0=}O,1~YES)
PACKAGE_NAME = NO_PACKAGE
FABLINE_NAME = VTI_CN20A
COMPILER_TYPE = GCX

FLOORPLAN VERSION = 7.1
BOND_PAD_CNT = 40
HEIGHT_ESTIMATE = 216.89 MILS
(= 5509.006 u )
WIDTH_ESTIMATE = 174.04 MILS
( = 4420.515 u )
FUSED = 1 (0=NO,1=YES)
FUSION_REQUIKED = 1 (0=NO,1=YES)
PINOUT = 1 (0=NO,1=YES)
PINOUT_REQUIRED = 1 (0=NO,1=YES)
PLACED = 1 (0=NO,I1~YES)
PLACEMENT_REQUIRED = 1 (0=NO,1=YES)

DOWN_BONDS_ALLOWED = 1 (0=NG, 1=YES)
PKG_PIN_COUNT = 40
OBJECT_TYPE = Chip
AREA_PER_TRANSISTOR = 9.262081 SQUARE MILS

(= 5975.52438 u2 )
PHYSICAZ_IMPLEMENTATIONS_EXIST = 0 (0=NO,1=YES)
CHECKPOTNTS_EXIST = O (0=N",1=YES)
CAN_SET_FABLINE = 1 (0=NO, 1=YES3)

S M e e e N e e e M e e e e N e e S e et e e e S e e e e N e A et e . o e e " et e N et e et e

Figure 4.1 Keyparameters Listing for DFT CHIP
Design Submitted for Fabrication
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accomplished by applying the maximum fault coverage test vec-

tor set produced by the Genesil ATG process. Finally, testing

vas done on the chips to try and determine the maximum clock

speeds which could be used for the fabricated DFT_CHIP design.
1. Testing Methodology for the DFT_CHIP Design

This subsection deals with the methodology used during
the testing of the fabricated chips from the DFT_CHIP design.
However, the approach taken and steps used is applicable to
almost any other chip design produced using Genesil. The
actual test facilities and test gear used to accomplish
testing of the fabricated DFT_CHIP design chips involved usage
of a commercial level chip tester, the Textronix Digital
Analysis System (DAS) 9100, and its associated personal
computer (PC) controller software.

The DAS 9100 is a commercial level tester which has
numerous options for performing selected pattern generation
and data acquisition functions and can be used in a stand-
alone mode to accomplish chip testing. DAS 9100 Pattern
Generation modules are used to apply input signal patterns to
the device under test (DUT). DAS 9100 Data Acquisition
modules are used to acquire the output results form the DUT
and to monitor the input patterns supplied by the Pattern
Generation modules.

Since testing on the DFT_CHIP was not done using the
DAS 9100 in a stand-alone mode, its use in this manner will

not be discussed here. Instead, the DAS 9100 documentation of
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Reference 21 and Reference 22 should be reviewed for informa-
tion concerning the configurations, capabilities, usage and
setup of the DAS 9100 in a stand-alone mode. Additionally
Chapter III of Reference 23 should be read to gain information
on usage of the DAS 9100 configuration available at the Naval
Postgraduate School (NPS).

Testing of the DFT_CHIP design was done exclusively by
using the DAS 9100 in conjunction with its PC controller based
9100 Device Verification Software (91DVS). The advantage of
performing testing in this method vice using the DAS 9100 in
a stand-alone mode is the ease of use and speed of configura-
tion setup possible for performing testing on the DAS 9100.
Through use of a menu driven interface, the 91DVS software
allows the user to send setup commands to the DAS 9100, apply
test sequences to run tests, compare acquired test results
against expected results and view the applied test patterns
and acquired test results outputs along with the expected
results on a screen display [Ref. 24:p. 1-1]). 91DVS can be
run on any AT or XT configuration PC with DOS 3.0 or higher,
and the PC is linked to the DAS 9100 via use of a GPIB
interface card which controls a high-speed data 1link
[Ref. 24:p. 1-1]. Figure 4.3 shows a functional block diagram
‘of the NPS configuration for the test system utilizing the
91DVS software with the DAS 9100 tester.

The 91DVS software contains two software program

choices for installation: DVS25 and DVS50. Based on the use
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Personal Computer (AT/XT)

91DVS Software

1

GPIB Interface Card

DAS 9100 Tester

91A32 Data 91516 and 91832
Acquisition Pattern Generation
Module Modules

Device Under Test

Figure 4.3 Functional Block Diagram of Integrated
91DVS and DAS 9100 Test System

111




of 91816 and 91S32 Pattern Generator modules for the DAS 9100
configuration at the NPS, the DVS50 software program is
presently installed on the controller PC. Use of the DVS50
software requires that the clock rates for the pattern
generator and data acquisition modules of the DAS 9100 be the
same [Ref. 24:p. 1-3]. Since the DAS 9100 configuration at
the NPS uses a 91A32 Data Acquisition module with a 25 MHz
maximum clock rate, this limits the maximum clock speed of the
pattern generator modules to this same rate. The additional
DVS50 requirement that data acquisition modules be clocked
from the output of a pattern generator module limits the
present NPS DAS 9100 configuration of pattern generator and
data acquisition modules to 31 data acquisition channels and
47 pattern generation channels [Ref. 23:p. 73].

To use the DVS50 software to run a test two user
supplied files must be available on the PC: the ".src" file
and the ".das" file. The ".src" file is used by the DvVS50
software to generate the configuration setup information used
by the DAS 9100 during the test run. The ".das" test pattern
file contains the sequence of input signal test vectors which
will be applied to the DUT. An additional file which can be
used with the DVS50 software is the ".sim" file. It contains
the sequence of test vector inputs together with the expected
output signal results and is used to compare actual test
results against the expected results. The ".src", ".das", and

".sim" files must all be generated prior to initiating use of
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the DVS50 program. Chapter 5 of Reference 24 contains
specifications for the required formats of these files.

The MASM test vector files generated by the simulator
and ATG processes 1in Genesil are pot in the format of the
".das" and ".sim" files used by the DVS50 program. Addition-
ally, the ".src" file must be generated at least once for each
fabricated Genesil design which will be tested. To simplify
the process of creating the files required by the DVS50
program, a conversion program, convert.c, was written in C to
translate Genesil MASM test vector files to the ".das" and
".sim" formats. Additionally, if generation of a ".src'" file
is requested the conversion program will query the user on the
needed information to produce a ".src" file. The source code
for convert.c is contained in Appendix D. Both the source
code and the executable program, convert.exe, are contained in
the C:\DVSTEST subdirectory of the PC which has the DVS50
program installed on it.

To produce the user files required by the DVS50
program the Genesil MASM test vector files must first be
exported from Genesil to a UNIX directory and then be trans-
ferred to the C:\DVSTEST subdirectory of the PC by using the
KERMIT file transfer procedure. The conversion program can
then be run. To obtain instructions on the use of the
conversion program just enter the command "convert" from the

C:\DVSTEST subdirectory.
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An example of the ".src" file which can be produced
using the conversion program is shown in Figure 4.4. Each pin
on the DUT, as identified by name and pin number, shows
whether a pattern generation (PAT) channel, data acquisition
(ACQ) channel, or both will be attached to it. Additionally,
the power supply pins have the label PS identified with them.
The ".src" file also contains the details on the pattern
generator module clocking rate (TIMEDEF information), pin
threshold level (THRESHOLD information) and power supply pin
definitions (PSDEF information) used by the DVS50 program to
establish the proper setup information for the DAS 9100.

Examples of the ".das" and ".sim" files are provided
in Figure 4.5 and Figure 4.6. They are nearly the same except
that the ".sim" file contains the names and expected output
sequence results for each output signal as well as the input
signal names and test vectors. The ".das" file contains only
the input signal names and test vector information.

Once ".src", ".das" and ".sim" files have been created
through use of the conversion program testing on a chip via
use of the DVS50 software can commence. Reference 23 contains
a detailed tutorial on the use of this software. The follow-
ing steps used to test the fabricated chips from the DFT_CHIP
design illustrate the testing process.

1. Start the DVS50 program by typing DVS50 from within the
C:\DVSTEST subdirectory which contains the ".src", "das"

and ".sim" files.

2. From the DVS50 main menu choose Compile Test Program and
provide the names of the ".src" and ".das" files. The
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PROGRAM DFTCHIP;

PINDEF;
CLOCK2 : 20, PAT, ACQ;
CLOCK_SYS : 13, PAT, ACQ;
DATCON : 26, PAT, ACQ;
IN_PADS15 : 32, PAT, ACQ;
IN_PADS14 : 33, PAT, ACQ;
IN_PADS13 ¢ 34, PAT, ACQ;
IN _PADS12 + 35, PAT, ACQ;
IN_PADS11 : 36, PAT, ACQ;
IN_PADS10 : 37, PAT, ACQ;
IN_PADS9 : 38, PAT, ACQ;
1i_PADSS : 39, PAT, ACQ;
IN_PADS7 : 40, PAT, ACQ;
IN_PADS6 :o1, PAT, ACQ;
IN_PADSS : 2, PAT, ACQ;
IN_PADS4 : 3, PAT, ACQ;
IN_PADS3 : 4, PAT, ACQ;
IN_PADS2 : 5. PAT, ACQ;
IN_PADS1 16, PAT, ACQ;
IN_PADSO : 7, PAT, ACQ;
LOAD : 24, PAT, ACQ;
M2 : 23, PAT;
M1 : 22, PAT;
MSKCON v 27, PAT, ACQ;
OUTCON . 19, PAT;
REFCON : 25, PAT, ACQ;
SERIAL IN : 31, PAT, ACQ;
SFPCON . 28, PAT, ACQ;
TESTIN .8, PAT, ACQ;
OUT_PADS4 . 18, ACQ;
OUT_PADS3 17, ACQ;
OUT_PADS2 . 16, ACQ;
OUT_PADS1 : 15, ACQ;
OUT_PADSO : 14, ACQ;
SHIFTOUT 21, ACQ;
VDD_CORE .9, PS 1;
VDD_KING : 10, PS 1;
VDD_CLOCK :o11, PS 1;
VSS_CLOCK 212, PS 2;
VSS_RING i 29, PS 2;
VSS_CORE . 30, PS 2;
END;
TIMEDEF;
PAT : ns 100;
END;
THRESHOLD;
ACQ : TTIL;
END;
PSDEF;
1 : mV 5000, mA 3000;
2 : mV 0;
END;
BEGIN;
ENDS

Figure 4.4 ".src" File Format
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DFTCHIP

1

1

28

CLOCK2

CLOCK_SYS

DATCON

IN_PADS15

IN_PADS14

IN_PADS13

IN_PADS12

IN_PADS11

IN_PADS10

IN_PADS9

1N_PADS8

IN_PADS7

IN_PADS6

IN_PADSS

IN_PADS4

IN_PADS3

IN_PADS2

IN_PADS1

IN_PADSO

LOAD

M2

M1

MSKCON

OUTCON

REFCON

SERIAL_IN

SPcoN

TESTIN
1101011161001111000101001900
0010111010111100111110101000
1111002010110111010111111101
0001311101001111110000001101
1110001101111100010120000110
0001101010000010011000110011
1110101101101001101001011101
¢010011110000110011101111100
1111010010000100110000110000
0011100001111001100100010101
1100000000111111010111116000
0011111001011001100100110000
1110100111101010000100000001
0000110000001110101101111000
1110010000010011110011011110
0000011111100010100110111111
1110011010110001000111100010
0000011111000110111100110001
1100100111011011001100001000
0010000000110110010101311011
110100011110010001000010C260
0011011010111011110100011110
1101000111010102310000160101
0011000001110010011000001001
1110000110001000110000010011
0011111111001110111000111110
1100011011010012100001101010

Figure 4.5 ".das" File Format
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DETCHIP

1

1

34

CLOCK2
CLOCK_SYS
DATCON
IN_PADS15
IN_PADS14
IN_PADS13
IN PADS12
IN_PADS11
IN_PADS10
IN_PADSS
IN_PADSS
IN_PADS?
IN_PADS6
IN_PADSS
IN_PADS4
IN_PADS3
IN_PADS2
IN_PADS1
IN_PADSO

REFCON
SERIAL_IN

SPCON

TESTIN

OUT_PADS4

OUT_PADS3

OUT_PADS2

OUT_PADS1

OUT_PADS0

SHIFTOUT
1101011101001111000101001000......
0010111010111100121110101000......
111100101011011101011111110100000.
000112110100111111000000110100000,
1110001101111100010110000110000000
0001101010000010011000110011000000
1110101101101001101001011101010111
0010011110000116611101111100010111
1111010010000100110000110600101110
0011100001111001100100010101101110
1100000000111111010111110000000000
0011111001011001100100110000000000
1110160111201010000100000061000101
0000110000001110101101111000000101
1110010000010011110011011110101001
0000011111100010100110111111101001
13110011010110001000111100010001011
0000011111000110111100110001001011
11001001110110110011000010006000110
00610060000110110010101111011000110
11010001111001600610000100000016100

dots (.) mean undetermined
(i.e., not yet initialized)

Figure 4.6 ".sim" File Format
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DVS50 program will use these files to produce the binary
information files used to setup and control the DAS 9100
during the test run. Additionally, the Channel Specifi-
cation List, which indicates how to connect the DAS 9100
probes to the DUT, is produced.

Return to the main DVS50 menus and Choose Information.
From the Information menu select Printing to toggle the
information output location to send information to the
printer vice the screen. Next select List Channel
Specification from the Information menu. This will
cause a copy of the Channel Specification List to be
printed out. This step needs to be done only for the
first test on a chip design or if anything as been
changed in the "“.src" for subsequent tests.

Using the information from the Channel Specification
List insert the DUT in the test jig and connect the DAS
9100 probes and power supply connectors. Figure 4.7 is
an example of the Channel Specification List information
used to connect up the DUT. Changes to the probe
connections for subsequent tests and additional chips
only needs to be done if the ".src" file PAT or ACQ
channel information has been changed.

Reenter the DVSS50 man menu and choose Enter Test Menu
followed by Run Test to commence the test run. Ensure
that the DAS 9100 has its power turned on and has
completed its startup self-checks. When prompted by the
DVS50 program turn on the power to the test jig for the
DUT. The DVS50 program will then download the configu-
ration setup and test vector pattern information to the
DAS 9100. The DAS 9100 will run the test using this
information and upload the results from the data
acquisition channels to the PC. The test results are
stored on the PC by the DVS50 software in a file with
the extension name of ".A0l1". Upon completion of the
test turn off the power suppiy to the test jig and
reenter the main DVS50 menu.

To display the test results on the PC's screen select
Display Test Results and provide the filenames of the
" A01" and ".sim" files. The DVS50 program will display
the test results in timing diagram format with the
".A01" file actual test result information and ".sim"
file expected test result information overlaid on each
other in different colors for easy comparison. The
screen display window can then be expanded, compressed,
or moved through in a left or right direction using the
PC function keys. The screen display window can display
information on up to 24 signals at a time. Initially
the display will show the alphabetically first 24 input
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9100 Device Verification Software - Version DVSS50-2.31

L R R e R A R e 2 ]

Listing generated : ** 06/14/1990 ** 13:23:47 +*
Test Program in Use : DFTCHIP

#** CHANNEL SPECIPICATION LIST #»+¢

ATTENTION : Connect the DAS-PODs to the pins of the DUT
according to the following list.
Take care - incorrect connections may cause

permanent damage to the DAS-PODs or the DUT 1

RN R T A AR R T AT R P A N RN R RO A P R N N A R A N AN R PSR T R RN PR R EATRREAN I NP R

* *
* Trigger channel(s): PG-POD ACQ-POD *
® -
* 1B-STB-1 §D7-1 .
» -
IR R R R R RN R R R R R RS R S RS PR RS R ]
* -
* ACQ clock channel(s): PG-POD EXTCLX-POD *
* *
o 1B-CLK-1 7C-CLK1-1 .

-
AR R A R R R R R R R R R R R R R R R S R AR RS AR RS 2RSSR 2
L 2 -
* NR: NAME PINNUMEER POD(S) *
- 4
. FG  ACQN  ACQF othar .
* 1 CLOCK2 20 1B7-1 SD6-1 *
* 2 CLOCK_SYS 13 1B6-1 5D5-1 *
* 3 DATCON 26 1B5-1 5D4-1 *
* 4 IN_PADS15 32 1B4-1 5D3-1 *
* S IN_PADS14 33 1B3-1 SD2-1 *
. 6 IN_PADS13 34 1B2-1 SD1-1 *
* 7 IN:PADSIZ 35 1Bl1-1 5DO-1 *
* 8 IN_PADS11 36 1BO-1 5C7-1 *
o 9 IN_PADS10 37 1A7-1 5Cé-1 *
* 10 1IN_PADSY 3 1A6-1 5C5-1 *
* 11 1IN _PADS8 39 1AS-1 SC4-1 *
* 12 IN_PADS?7 40 1A4-1 5C3-1 .
* 13 IN_PADS6 1 1A3-1 SC2-1 *
* 14 IN_PADSS 2 1A2-1 5C1-1 *
* 15 1IN_PADS4 3 1Al1-1 5C0-1 *
* 16 IN_PADS3 4 1A0-1 5B7-1 *
* 17 IN_PADS2 S 2D7-1 5SBé-1 *
* 18 IN_PADS1 6 2D6-1 SBE5-1 *
* 19 IN_PADSO 7 2D5-1 5B4-1 *
* 20 LOAD 24 2D4-1 5B3-1 *
* 21 M2 23 203-1 *
* 2z M1l 2z 2Dz-1 *
* 23 MSKCON 27 2D1-1 65B2-1 *
* 24 COUTCON 19 2p0-1 *
* 25 REFCON 25 2¢7-1 5B1-1 *
* 26 SERIAL_IN 31 2C6-1 5BO-1 *
* 27 SPCON 28 2C5-1 5A7-1 *
* 28 TESTIN 8 2C4-1 5A6-1 *
* 29 CUT_PADS4 18 SA5-1 v
* 30 CUT_PADS2 17 5A4-1 *
* 31 OUT_PADS2 16 SA3-1 *
* 22 OUT_PADS1 15 SA2-1 .
* 33 OUT_PADSO 14 SA1-1 *
* 34 SHIFTOUT 21 SAOD-1 .
* 35 VDD _CORE 9 PS1 hd
* 36 VDD_RING 10 P31 .
* 37 VID_CLOCK 11 PsSi .
* 38 VSS_CLOCK 12 PS2 *
* 39 VSS_RING 29 Ps2 .
* 40 VSS_COKE 3¢ PS2 -
v .
LAAS A E R R R AR R 2 A A R R R R R A R R R R R N R R A R S R R R R R R 22 R R RS

Figure 4.7 Channel Specification List Format
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or output signals acquired during the test. To see

other signals one of the signals presently displayed

must be deleted before another signal can be inserted

for display. Chapter 4 of Reference 24 provides

specifics on user control of the DVS50 screen display.

Figure 4.8 is an example from a test on the DFT_CHIP

design of the screen display format which can be

obtained for looking at test results.
Additional chips of the same design can be tested against the
same set of test vectors by merely replacing the chip located
in the test jig and then re-entering the DVS50 test menu
(i.e., start with step five above).

2. Test Results for the DFT_CHIP Design
Using the steps enumerated in the previous subsection
(Testing Methodology for the DFT_CHIP Design), the fabricated
copies of the DFT_CHIP design were tested on the Das 9100 test
gear. Each of the 12 fabricated chips were tested for overall
manufacturing errors caused during fabrication by applying the
test vector pattern for the maximum fault coverage test vector
set obtained from the Genesil ATG process. Next, to validate
that the DFT_CHIP design functionality was consistent with the
desired operational logic the chips were tested using the test
vector patterns produced from the Genesil simulation process.
Each chip was tested using the test vectors produced from the
test_parallel_in, test_serial_in, test_force and test_scan_-
clock simulation check functions.
Since the logic design for all chips is the same and

the purpose of the maximum fault coverage test vector set is
to uncover manufacturing errors, the need to test the logic

functionality of each chip in a commercial environment is not
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present. Instead, if fault coverage is high, a commercial
chip design may need to have only limited chip quantities
checked for proper logic functionality. The remaining chips
would then be accepted or rejected based only on the results
obtained from testing with the maximum fault coverage test
vector set.

For the DFT_CHIP design all copies of the fabricated
chip passed all tests run on them. No unexpected logic
functionality errors or manufacturing errors were observed.
The DAS 9100 test gear, as controlled using the DVS50 software
via the PC, made for a quick and easy means to conduct the
tests and compare the results against the expected values
determined by Genesil.

The final testing conducted on the fabricated chips
was that done to try and determine the maximum clock speeds at
which the two clock signals for the DFT_CHIP design could be
applied. The global system and local scan path clock signals
for the chip are generated via the test vector patterns which
are applied. It takes a minimum of two consecutive test
vectors to produce a complete clock cycle for either of these
two signals. Since the DAS 9100 applies one test vector for
each complete cycle of the pattern generator clock, the
‘minimum time periods for the clock signals applied to the chip
were twice the period of the pattern generation clock cycle

used by the DAS 9100.
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Using a 91A32 Data Acquisition module the DAS 9100
tester can have pattern generation clock cycle periods of
40ns, 50ns, 100ns, 200ns, 500ns, 1lus, 2us, 5us, 1l0us, 20us,
S0us, 100us, 200us, 500us, 1lms, 2ms and 5ms. Based on this,
the maximum testable global system and local scan path clock
speeds which could be applied to the DFT_CHIP design using the
DAS 9100 configuration available at the NPS were 12.5 MHz.
This same limitation would be found for any clock signal
applied to a DUT that was derived from a Genesil produced test
vector pattern.

First, the test vector sets which had both the global
system and local scan path clocks cycling at the same speeds
were applied to the chips. At clock speeds of 12.5 MHz and
10.0 MHz the chips would not produce the correct outputs. At
a clock speed of 5.0 Mhz the outputs were correct.

Next, the test vectors produced from the test_scan_clock
simulation function were applied. This function caused the
global system clock signal to be first applied at a frequency
half that of the local scan path clock signal and then to
remain off while the local scan path clock continued to
function. When this set of test vectors was run with the
pattern generation clock frequency set such that the global
system clock cycled at 6.25 MHz and the local scan path cycled
at 12.5 MHz the outputs were as predicted.

These results tend to verify the predictions made by

Genesil about the maximum operating frequencies for the two
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clocks on the DFT_CHIP design. The maximum operating frequen-
cy for the global system clock is at least 5.0 MHz but is less
than 10.0 MHz. The exact maximum operating frequency for the
global system could not be determined since the DAS 9100 can
only change test frequencies in set increments. However, the
chips all performed better than the apparently conservative
Genesil estimate of 4.43 MHz for the global system clock. TheA
local scan path clock was able to run successfully run at 12.5
MHz which verified Genesil's prediction that it would run
faster then the global system clock. Higher speeds for the
local scan path clock could not be attempted due to the
maximum operating speed constraints of the present DAS 9100
configuration. Finally, these results validated the design
objective of being able to run the local scan path clock at a
higher frequency than that of the global system clock and to
continue scan path operations during periods that the global

system clock was not operating.
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V. CONCLUSIONS

A. SUMMARY

This thesis has both described the benefits of including
Design for Testability in a VLSI chip design and provided
information on accomplishing this using the Genesil Silicon
Compiler. Through a presentation of the methodology needed to
implement a DFT design using Genesil, fabricate the design via
MOSIS, and then test the chips on the DAS 9100 tester, a
complete chip design production and testing sequence was
illustrated.

The need for including DFT features in chip designs
becomes increasingly important as the maximum fault coverage
obtainable for more complex chips without DFT features
decreases. The need for obtaining a high degree of fault
coverage for VLSI chips was examined and a relationship
between a chip's fault coverage, defect level and yield was
developed. Both the Scan Path and Built-in Test techniques
were discussed. They both provide a reasonable means of
raising the fault coverage possible for a chip by providing
greater controllability and observability of internal chip
nodes. Whether one and/or both of these techniques should be
used is decided by incorporating an evaluation of the specific

design being produced.
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Genesil, through its Testability Latch Blocks, provides a
simple means of incorporating DFT into a chip design. Due to
its ease of use, Genesil allows different DFT alternatives, in
terms of techniques and/or feature placement, to be evaluated
in a reasonable amount of time.

Including DFT features in a chip design can exact penal-
ties in both the chip size and in performance characteristics
such as operating speed and power consumption. Genesil
designs are especially prone to experiencing penalties in chip
size as object components are added. Proper floorplanning
techniques, to include manual placement to locate objects, is
critical in the size optimization effort for a Genesil
produced design.

Genesil's simulation and automatic test generation
features provide an integrated, easy to use means of develop-
ing test vectors which will either check the logic functional-
ity of a design or provide the maximum possible fault cover-
age. Fault grading using the ATG process illustrated that
test vector sets which provide good functional testing
information may not provide a high degree of fault coverage.
This again demonstrates that both categories of test vectors
are needed for testing purposes. Being able to use an
automated approach to developing test vectors provides a
significant time savings. Without the simulation and ATG
features of Genesil the evaluation of test vectors to be

applied to the fabricated chips, on top of all the other
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necessary design development steps, would not have been
practical for a single person to accomplish.

Once Genesil designs are finished they are completely
compatible with fabrication via MOSIS as long as a match is
made between fabrication technologies. MOSIS provides
excellent turn-around time service at a very reasonable cost
of fabrication.

By utilizing the DVS50 software to control the DAS 9100
tester, chips fabricated from Genesil produced designs can be
conveniently tested. The conversion program to translate test
vectors from Genesil's MASM file format to the ".das" and
".sim" files used by the DVS50 software provides an easy means
of utilizing any test vectors produced during the design
process. Almost no knowledge of the DAS 9100 tester is needed
to conduct tests if the DVS50 software is used. The DAS 9100
provides an adequate means of testing fabricated chips within
the limitations of the maximum chip clock speeds which can be
obtained.

Simulation results predicted by Genesil agreed with the
results obtained during actual testing on the fabricated chip
design. The use of the scan path for the design raised the
fault coverage obtainable and lowered the number of test
vectors needed to obtain maximum fault coverage as compared to
the same design without a scan path. Obtaining expected test
results for the maximum fault coverage test vector set

indicated, to a high degree of confidence, that all the chips
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were properly fabricated. Without the scan path feature the

degree of confidence about the absence of manufacturing

defects would have been smaller.

B.

RECOMMENDATIONS

The following recommendations should be considered for

implementation or additional investigation:

1.

Genesil usage is highly CPU intensive. For the present
setup of Genesil operating on the VAX a large amount of
time is wasted waiting for Genesil to complete opera-
tions during periods of medium to high computer usage by
other students. To greatly increase the speed of
producing Genesil designs, Genesil should be moved to a
platform which allows nonshared usage of a fast CPU.

The speed of applying test vectors on the DAS 9100 using
the DVS50 software is presently constrained due to using
a 91A32 Data Acquisition module which has its acquisi-
tion rate limited to 25 MHz. A 91A08 Data Acquisition
module, which would raise this rate to a 50 MHz limit
using the DVS50 software, should be acquired. This
would allow an effective maximum rate of 25 MHz, vice
the present 12.5 MHz, for chip clock signals generated
via Genesil produced test vector sets.

Investigate the use of the Built-in Test DFT technique
alone and or together with a scan path on a more complex
Genesil produced VLSI design.

Investigate the incorporation of integrated DFT tech-
nigques and features into multiple chip VLSI designs to
enhance complete board and or system level testing.

Genesil designs are presently limited by the need to
utilize only Genesil library provided blocks during the
design process. Investigate the means of incorporating
optimized VLSI components, designed in a program like
MAGIC, into Genesil designs to enhance the performance
of critical chip components and to minimize overall chip
size.
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APPENDIX A. BASIC CHECK FUNCTIONS

This Appendix contains the GENIE language source code

written for the basic building block check functions. These

check functions only accomplish limited simulation tasks but

may be grouped together or called from a higher level check

function to run a complete simulation test.

func

func

func

func

MSP {args value /* Function to set the mask register
values in a parallel manner */

sn SPCON O

sn IN_PADS @value

sn MSKCON 1

ck

sn MSKCON 0

}

RSP {args value /* Function to set the reference
register values in a parallel manner */

sn SPCON O

sn IN_PADS @value

sn REFCON 1

ck

sn REFCON O

)

DSP {args value /* Function to set the data register
values in a parallel manner */

sn SPCON O

sn IN_PADS @value

sn DATCON 1

ck

sn DATCON O

)

TSS {args value /*Function to serially load 32 bits via
the scanpath. Note: data is read in msb first. If
the value used is not 32 bits in length 0's are read
in to the left (msb's) of the loaded value */

vars lsb length valstr i

set valstr (bin @value) /* Convert value into ascii
string and assign to valstr */
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set length (strlen @valstr) ,* Determine length of

valstr's ascii string #*/

sn M1 0 /* Insure testability latches set up for serial

shifts*/

sn M2 O
if (@length != 33) { /* String conversion appends an

extra 0 onto the first position of the string so
check for a length of 33 */
for (i=0; @i< (33 - @length); ++1i) ( /* If value was
not 16 bits then append the necessary zeroes
to the front of the number before loading
the msb */
1sb = 0
sn TESTIN @lsb
ck
}
}

for (i=1; @i<@iength; ++i) { /* Start with position 1

snh
sn
ck
sn
sn

}

func TS

(not 0) since the first bit in position 0 is
the extra appended 0 which occurs during
value to binary string conversion */

(ord (substr @valstr @i 1 )) /* Extract the
next msb from the string to shift in as
data. Note: this line returns the ascii
numeric value for this bit*/

1sb = (@lsb - 48) /* Convert ascii numeric value

to the value to be shifted in next */

sn TESTIN @lsb /* Assign value to be shifted in to

the input pin */

ck /* clock in value =*/

}

1lsb

LOAD O /* Disable LOAD so forced value is not

overwritten */

Ml 1 /* Enable force operation for testability

latches */
/* Cycle to force all 32 bits into shift latch
locations of testability latches */

M1 0 /* Return testability latches to normal shift

operation */

LOAD 1 /* Return chip to normal ops on next clock

cyclex*x/

{args valuel value2 /* Function to serially load 1 to

32 test bits via the scanpath. Upon completion of
the scanpath serial load, a force operation is done
on the testability latches to cause the values in
the scanpath testability shift latches to be loaded
into the testability data latches for propagation to
the final output pins. Note: both the scan path
shift operations and normal operations are restored
upon completion. Note: data is read in msb first. If
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the value2 used is not valuel bits in length O's are
appended to the left (msb's) of value2. If value2
has more bits than designated by value 1 then only
the first value 1 msb's are shifted into the
scanpath. */
vars 1lsb length valstr i
set valstr (bin @value2) /* Convert value into ascii
string and assign to valstr */
set length (strlen @valstr) /* Determine length of
valstr's string */
sn M1 0 /*insure testability latches set up for serial
shifts*/
sn M2 0
if (@length != (@valuel + 1)) { /* String conversion
appends an extra 0 onto the first position of
the string so use valuel + 1 */
for (i=0; @i<((@valuel + 1) - @length); ++i) {
/* If value2 was valuel bits then append the
necessary zeroes to the front of the number
before loading the msb */

l1sb = 0
sn TESTIN @1sb
ck

)

}

for (i=1; @i<@length; ++i) { /* Start with position 1

(not 0) since the first bit in position 0 is the
extra appended 0 which occurs during value to
binary string conversion */

1sb = (ord (substr @valstr @i 1 )) /* Extract the
next msb from the string to shift in as data.
Note: this line returns the ascii numeric value
for this bit*/

1sb = (@lsb =~ 48) /* Convert ascii numeric value
to the value to be shifted in next */

sn TESTIN @lsb /* Assign value to be shifted in to
the input pin */

ck /* clock in value */

}

force_in RB /* Force the values from the scanpath
shift latches into the testability data latches
for propagation to the output */

}

func SS (args shift type valuel value2
/* General function for shifting in items serially.
Arg 1 (shift_type) must be a string which specifies
the items which will be shifted in. Allowable arg 1
inputs are D (data), R (reference), M (mask), T
(test via scanpath), DT (data and test), RT
(reference and test), and MT (mask and test). Args 2
to 3 are th< number values which correspond to the
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strings to be shifted in. The order of these values
must match the order of the items from arg 1. */
vars valstrl lengthl valstr2 length2 i
set valstrl (bin @valuel) /* Convert value to ascii
string */
set lengthl (strlen @valstrl) /* Determine length of
string */
set valstr2 (bin @value2)
set length2 (strlen @valstr2)
sn SPCON 1 /* Set SPCON for serial inputs */
if ((@lengthl != 17) && (@valuel != null)) {
/* If string length of input value is less than 17
bits then cat zeros to the left until a full size
string is present. Note: the bin process returns a
string with an extra 0 appended to the left causing
17-bit strings to be returned for a normal 16-bit
value input. */
for (i=0; @i< (17 =~ @lengthl); ++i) {
valstrl = (cat 0 @valstril)
)
)
if ((@length2 != 17) && (@value2 != null)) ¢
for (i=0; @i< (17 -~ @length2); ++1i) {
valstr2 = (cat 0 @valstr2)
)
)
for (i=1; @i<17; ++i) { /* Loop to shift in data bits*/
if (@shift_type == "D") {
LSB D @valstrl @i /*place next msb at serial
data input */
sn DATCON 1 /* Enable data to be shifted in */
ck /* Cycle to shift in bit */
}
)
for (i=1; @i<17; ++i) { /* Shift in reference bits */
if (@shift_type == "R") {
LSB R @valstrl @i
sn REFCON 1
ck
)
}
for (i=1; @i<17; ++i) { /* Shift in mask bits */
if (@shift_type == "M") ({
LSB M @valstrl @i
sn MSKCON 1
ck
}
}
for (i=1; @i<17; ++i) { /* shift in test bits */
if (@shift_type == "T") ({
LSB T @valstrl @i
sn M1 0O /* Enable scanpath shift ops */
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func

ck
} )
for (i=1; @i<17; ++1i) { /* Shift in data and test bits */
if (@shift_type == "DT") ({
I.SB D @valstrl @i
sn DATCON 1
LSB T @valstr2 @i
sn M1 O
ck
}
}
for (i=1; @i<17; ++i) {( /* Shift in ref and test bits */
if (@shift_type == "RT") ({
LSB D @valstrl @i
sn REFCON 1
ISB T @valstr2 @i
sn M1 O
ck
}
}
for (i=1; @i<17; ++i) { /* Shift in mask and test bits */
if (@shift_type == "MT") ¢{
LSB D @valstrl @i
sn MSKCON 1
LSB T @valstr2 @i
sn M1 O
ck
)
}
sn DATCON 0 /* Disable data inputs */
sn REFCON 0 /* Disable reference inputs */
sn MSKCON 0 /* Disable mask inputs */
sn M1 1 /* Disable scanpath shift ops */
}

LSB {args shift type valstr 1lsb i_1lsb
/* Function called by SS to assign the next bit of
the input value string to the serial input pin */
vars 1lsb
lsb = (ord (substr @valstr_1lsb €i_1sb 1))
/* Obtain the next bit to be input as an ascii
character */
1sb = (@lsb - 48) /* Convert ascii character to a
number* /
if ((@shift_type=="D") | (@shift_type=="R") !
(@shift_type=="M")) {
sn SERIAL_IN @lsb /* Assign next bit for to be
used for the serial input */
)
if (@shift_type == "T") ({ /* Assign bit for test
shift in* /
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}

sn TESTIN @lsb
}

func force_in {args force_type

sn
sn

sn
ck

if

if

if

)

/* Function to cause values which have been shifted
in via the scanpath to be forced into the
testability latch data latches. Note: once LOAD
returns to 1 the normal propagated values from the
data, ref, and mask registers reenter the data
latches on the next clock cycle. The RB option
restores both shift and normal ops, RN restores
only normal ops, and RS restores only shift ops. */
LOAD 0 /* Disable normal inputs to testability
latch shift latches */
M1l 1 /* Enable force ops and disable scanpath shift

ops*/
M2 O
/* Cycle. This causes OUT_PADS to have an output
based on the values shifted in via the scanpath.
Note: no outputs will be obtained until 32 bits have
been shifted into the scanpath to fill all spots
along th~ serial scanpath testability latch line */
(@force_type=="RB") ({

sn M1 0 /* Restore normal shift operations */
sn LOAD 1 /* Restore ops to normal on next clock

cycle */

println "Both scan path shift ops and normal ops
restored”

)

(@force_type == "RN") ({(

sn LOAD 1 /* Restore normal ops */

println "Scan path shift ops disabled, normal ops
restored"”

println "Restore shift ops by setting M1 to 0"

}

(@force_type == "RS") {

sn M1 0 /* Restore shift operations in scanpath */

println "Scan path shift ops restored, normal ops
disabled"

println "Restore normal ops by setting LOAD to 1"

}

func swap_in {args swap_type

/* Function to swap the data latch values with the

testability latch shift latch values. Options for
this function are RS to restore the scanpath shift
ops but keep the normal ops disabled after
completion, RN to restore the normal operations but
keep the scan path shift ops disabled, and RB to
restore both after completion. */
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func

sn LOAD O /* Disable normal input to data latches */

sn M1 1 /* Set M1 and M2 for swap operation */

sn M2 1

ck /* Cycle circuit to perform swap operation */
if (@swap_type == "RB") {

force_in RB /* A force operation must be done
immediately after the original data latch
contents move into the shift latch portion of
the testability latch */
)
if (@swap_type == "RN") {
force_in RN
}
if (@swap_type == "RS") ({
force_in RS
}
)

sample_in { /* Function to sample the data in the data
latch and place it into the shift latch portion of
the scanpath for scanpath output */

sn LOAD 1

sn M1 O

sn M2 1

ck

sn M1 O

sn M2 0

sn LOAD 1

)

func tog { /* Function to set up toggle patterns for clocks */

func

toggle CLOCK 1 '(0 10 20) /* Set up toggle scheme for
CLOCK signal */
tag CLOCK cycle none /* Reset CLOCK cycle tags */

tag CLOCK cycle falling /* Tag CLOCK so that "ck"
command advances to the next rising edge of the
CLOCK signal */

tag CLOCK step both

toggle CLOCK2 O '(5 15 25) /* Set up toggle scheme for
CLOCK2 signal */

tag CLOCK2 cycle none /* Do not base "ck" commands on
state of CLOCK2 */

tag CLOCK2 step both /* Needed to get step resolution */

}

untog { /* Function to untoggle clocks - must be used
before running test vectors created by the traceobj
command */

untoggle CLOCK

untoggle CLOCK2

)
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APPENDIX B. HIGH LEVEL CHECK FUNCTIONS

This Appendix contains the GENIE language source code

written for the high level simulation check functions. These

check functions use the basic level check functions to

automatically accomplish a complete simulation test. Use of

the Genesil traceobj command also causes these check functions

to produce MASM test vector files.

func initall { /* Function to intialize all input pins at time

sn
sn

sn

sn
sn
sn
sn
sn
sn
sn
sn
ck

ck

-1. Note: all pins must have an initialization value
assigned for the simulation process to work
correctly. Also, note: prior to running this
function the time should be reset to time -1 by
using the command inittoggles. */
TESTIN 0 /* Set scanpath input to 0 */
LOAD 1 /* Enable test latches to move values from
combiner 1 to combiner 2 */

M1l O /* Set scanpath test latch operation for
shift in/out operation */

M2 0O

SERIAL _IN 0 /* Set serial input pin to value of 0 */

REFCON 1 /* Allow reference values to be input */

OUTCON 1 /* Enable outputs to OUT_PADS */

SPCON 0 /* Setup for par~llel inputs*/

DATCON 1 /* Allow data values to be input */

MSKCON 1 /* Allow mask values to be input */

IN_PADS 0X0000 /* Set all parallel input pins to 0 */
/* Cycle to bring time from -1 to 0 and input
0X0000 on the mask reference and data registers */
/* Cycle to propagate values from registers to the
data latches the testability latches */

sample_in /* Initialize scanpath nodes by sample

operation*/
sn MSKCON 0 /* Disable mask value input */
sn REFCON 0 /* Disable reference value input */
sn DATCON 0 /* Disable data value input */
ck /* Cycle to pass results to output pins */
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func test_parallel_in { /* Function to produce test vectors
which test the propering functioning of all portions
of the chip except the testability latches but which
emphasize the parallel load operations of the data,
mask, and reference registers */

inittoggles
untog /* Untoggle default clock toggle definitions */
tog /* Toggle clock toggle definitions */

traceobj vecspara / /* Initiate traceobj command to put
test results in a file named vecspara */
initall /* Initialize chip */

/* initialize mask and reference registers to OXFFFF */
MSP OXFFFF
RSP OXFFFF

/* Load various input values in a parallel manner into
the data register to check the chip's operation. The
inputs cause DATAOUT values to range from 00 to 10. */

DSP 0X0000 /* DATAOUT = 00 */
DSP 0X0001 /* DATAOUT = 01 */
DSP 0X0012 /* DATAOUT = 02 */
DSP 0X0122 /* DATAOUT = 03 #*/
DSP 0X0123 /* DATAOUT = 04 */
DSP 0X1234 /* DATAOUT = 05 */
DSP 0X2345 /* DATAOUT = 06 */
DSP 0X3456 /* DATAOUT = 07 */
DSP 0X4567 /* DATAOUT = 08 */
DSP 0X5678 /* DATAOUT = 08 */
DSP 0X6789 /* DATAOUT = 08 */
DSP 0X789A /* DATAOUT = 08 */
DSP OX89AB /* DATAOUT = 07 */
DSP OX9ABC /* DATAOUT = 08 */
DSP OXABCD /* DATAOUT = 09 */
DSP OXBCDE ,/* DATAOUT = OA #*/
DSP OXCDEE /* DATAOUT = OB */
DSP OXCDEF /* DATAOUT = 0C */
DSP OXDEEF /* DATAOUT = 0D */
DSP OXEEFF /* DATAOUT = OE */
DSP OXEFFF /* DATAOUT = OF */
DSP OXFFFF /* DATAOUT = 10 */

/* Load various input values in a parallel manner into
the reference register to check the chip's operation.
The inputs cause DATAOUT values to range from 00 to 10.
*/

RSP 0X0000 /* DATAOUT = 00 */
RSP 0X0001 /* DATAOUT = 01 */
RSP 0X0012 /* DATAOUT = 02 */
RSP 0X0122 /* DATAOUT = 03 */
RSP 0X0123 /* DATAOUT = 04 */
RSP 0X1234 /* DATAOUT = 05 */
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RSP 0X2345 /* DATAOUT = 06 */
RSP 0X3456 /* DATAOUT = 07 */
RSP 0X4567 /* DATAOUT = 08 */
RSP 0X5678 /* DATAOUT = 08 */
RSP 0X6789 /* DATAOUT = 08 */
RSP OX789A /* DATAOUT = 08 */
RSP OX89AB /* DATAOUT = 07 */
RSP OX9ABC /* DATAOUT = 08 */
RSP OXABCD /* DATAOUT = 09 */
RSP OXBCDE /* DATAOUT = OA */
RSP OXCDEE /* DATAOUT = OB */
RSP OXCDEF /* DATAOUT = OC */
RSP OXDEEF /% DATAOUT = 0D */
RSP OXEEFF /* DATAOUT = OE */
RSP OXEFFF /* DATAOUT = OF */
RSP OXFFFF /* DATAOUT = 10 */

/* Load various input values in a parallel manner into
the mask register to check the chip's operation. The
inputs cause DATAOUT values to range from 00 to 10. */

MSP 0X0000 /* DATAOUT = 00 */
MSP 0X0001 /* DATAOUT = 01 */
MSP 0X0012 /* DATAOUT = 02 */
MSP 0X0122 /* DATAOUT = 03 */
MSP 0X0123 /* DATAOUT = 04 */
MSP 0X1234 /* DATAOUT = 05 */
MSP 0X2345 /* DATAOUT = 06 */
MSP 0X3456 /% DATAOUT = 07 */
MSP 0X4567 /* DATAOUT = 08 */
MSP 0X5678 /* DATAOUT = 08 */
MSP 0X6789 /* DATAOUT = 08 */
MSP 0X789A /* DATAOUT = 08 */
MSP OX89AB /* DATAOUT = 07 */
MSP OX9ABC /* DATAOUT = 08 */
MSP OXABCD /* DATAOUT = 09 */
MSP OXBCDE /* DATAOUT = OA */
MSP OXCDEE /* DATAOUT = OB */
MSP OXCDEF /* DATAOUT = 0C */
MSP OXDEEF /* DATAOUT = 0D */
MSP OXEEFF /* DATAOUT = OE */
MSP OXEFFF /* DATAOUT = OF */
MSP OXFFFF /* DATAOUT = 10 */

untraceobj /* Close vecspara file */
}

func test_serial_in {/* Function to test the serial loading
capabilities of the chip. Values are loaded into the
data, reference and mask registers and into the
testability latches via use of the SS function. */
inittoggles
untog
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tog

traceobj vecsserl / /* Open file for test vector
results*/

initall /* Initialize chip */

/* Initialize mask and reference registers and testability
latch scan path latches to all ones #*/

SS MT OXFFFF OXFFFF

SS RT OXFFFF OXFFFF

/* Load values in a serial mannert into data register to
check for proper chip operation. Also include some new inputs
to the scan path to change the values scanned out of the chip.
The comments indicate the expected output values after the
completion of each operation. The println commands serve
as an example of a method of checking the simulation results
as the check function progresses. */
SS DT 0X0000 0X0000 /* DATAOUT = 00 SHIFTOUT STILL = 1%/
ck /* cycle to obtain expected output from scan path */
println “DT 0X0000 0X0000 done, 00 1 expected output,
current time" (gettime)
println "actual values" (snb OUT_PADS) (snb SHIFTOUT)
SS DT 0X1000 0X0000 /* DATAOUT = 01 SHIFTOUT NOW = 0 */
ck
println "DT 0X1000 0X0000 done, 01 0 expected output,
current time” (gettime)
println "actual values" (snb OUT_PADS) (snb SHIFTOUT)
SS DT 0X2100 OXFFFF /* DATAOUT = 02 SHIFTOUT STILL = 0 */
ck
println "DT 0X2100 OXFFFF done, 02 0 expected output,
current time" (gettime)
println "actual values" (snb OUT_PADS) (snb SHIFTOUT)
SS DT 0X2210 OXFFFF /* DATAOUT = 03 SHIFTOUT NOW = 1 */
ck
println "DT 0X2210 OXFFFF done, 03 1 expected output,
current time" (gettime)
println "actual values" (snb OUT_PADS) (snb SHIFTOUT)
SS D 0X3210 /* DATAOUT = 04 */
ck
println "D 0X3210 done, 04 1 expected output, current
time" (gettime)
println "actual values" (snb OUT_PADS) (snb SHIFTOUT)
SS D 0X4321 /* DATAOQOUT = 05 */
ck
println "D 0X4321 done, 05 1 expected output, current
time" (gettime)
println "actual values" (snb OUT_PADS) (snb SHIFTOUT)
SS D 0X5432 /* DATAOUT = 06 */
ck
println "D 0X5432 done, 06 1 expected output, current
time" (gettime)
println "actual values" (snb OUT_PADS) (snb SHIFTOUT)
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SS D 0X6543 /* DATAOUT = 07 */

ck

println "D 0X6543 done, 07 1 expected output, current
time" (gettime)

println "actual values" (snb OUT_PADS) (snb SHIFTOUT)

SS D 0XA987 /* DATAOUT = 08 */

ck

printlin "D 0XA987 done, 08 1 expected output, current
time" (gettime)

println "actual values" (snb OUT_PADS) (snb SHIFTOUT)

SS D OXBAA9 /* DATAOUT = 09 */

ck

println "D OXBAAS9 done, 09 1 expected output, current
time" (gettime)

println “actual values" (snb OUT_PADS) (snb SHIFTOUT)

SS D OXEDCA /* DATAOUT = 0OA */

ck

println "D OXEDCA done, OA 1 expected output, current
time" (gettime)

println "actual values" (snb OUT_PADS) (snb SHIFTOUT)

SS D OXEEDC /* DATAOUT = 0B */

ck

println "D OXEEDC done, OB 1 expected output, current
time" (gettime)

println "actual values" (snb OUT_PADS) (snb SHIFTOUT)

SS D OXFEDC /* DATAOUT = 0C */

ck

println "D OXFEDC done, 0C 1 expected output, current
time" (gettime)

println "actual values" (snb OUT_PADS) (snb SHIFTOUT)

SS D OXFEED /* DATAOUT = 0D */

ck

println "D OXFEED done, 0D 1 expected output, current
time"” (gettime)

println "actual values" (snb OUT_PADS) (snb SHIFTOUT)

SS D OXFFEE /* DATAOUT = OE */

ck

println "D OXFFEE done, OE 1 expected output, current
time" (gettime)

println "actual values" (snb OUT_PADS) (snb SHIFTOUT)

SS D OXFFFE /* DATAOUT = OF */

ck

println "D OXFFFE done, OF 1 expected output, current
time" (gettime)

println "actual values" (snb OUT_PADS) (snb SHIFTOUT)

SS D OXFFFF /* DATAOUT = 10 */

ck

println "D OXFFFF done, 10 1 expected output, current
time" (gettime)

println "actual values" (snb OUT_PADS) (snb SHIFTOUT)

untraceobj

)
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func test_force ({ /* Function to check the serial load

func

and force operations of the testability latches and
to also check the adder and final output results for
cases where the final output ranges from 10 hex to
1C hex (ie output due to force operations involves
values which can not be obtained through the inputs
to the correlator). */

/* Initialize time, and clock toggle definitions */

inittoggles

untog

tog

traceobj vecstfor / /* Start tracing of operations and
send output to file vecstfor.SMO */

initall /* Initialize chip */

/* cause output to be 10 hex */

MSP OXFFFF

RSP OXFFFF

DSP OXFFFF

sample_in /* Cause shift latches in testability latches
to hold values which causes an output of 10Ohex */

TS 16 OXFDFF /* Cause output of 11 */

TS 16 OXFDFF /* Cause output of 12 */

TS 16 OXFFFF /* Cause output of 13 */

TS 16 OXFFFF /* Cause output of 14 */

TS 16 OXFSFF /* Cause output of 15 */

TS 16 OXF5FF /* Cause output of 16 #*/

TS 16 OXF9F3 /* Cause output of 17 */

TS 16 O0XF9F3 /#* Cause output of 18 */

TS 16 OXF40F /* Cause output of 19 */

TS 16 OXF40F /* Cause output of 1A */

TS 16 0X6123 /* Cause output of 1B */

TS 16 0X6123 /* Cause output of 1C */

untraceocbj /* Close vecstfor file */

}

test_scan_clock { /* Function to test the ability of
the scan path clock (CLOCK2) to operate at a faster
speed than the global system clock (CLOCK2), and
also to test the ability to operate the scan path
with the global system clock off */

vars i1 /* variable for the loop */

inittoggles

untog

/* Provide toggle definitions for clocks * /

toggle CLOCK2 O '(0 5 10)

/* The following unwieldy looking toggle definition for
the CLOCK signal will cause it to operate at the same
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speed as the CLOCK2 signal during the initialization

process, at half the speed as the CLOCK2 signal for

the first part of the test, and then cause the CLOCK

signal to remain at zero for the remainder of the test */

toggle CLOCK 0 '(0 5 10 15 20 25 30 35 40 50 60 70 80 90
100 110 120 130 140 150 160 170 180 190 200 210 220
230 240 250 260 270 280 290 300 310 320 230 340 350
360 370 380 390 400 410 420 430 440 459 460 470
1000)

tag CLOCK2 step both

traceobj vecssclk /
initall

/* Put initial values into data, mask, and reference

registers to start the test. Note: each command must be

done twice since the function calls have clock cycles

based on CLOCK2 now, but you still need the same number

of clock cycles as normal to occur with the CLOCK signal

to load the values into the registers. */

MSP OXFFFF

MSP OXFFFF

RSP OXFFFF

RSP OXFFFF

DSP 0XcCcccC /* Loading this value into the data
register will cause a value of 2448 2448 (hex) to be
loaded into the scan path when a swap operation is
done. The sequence of ones and zeros coming out of
the scan path can then be checked against these
values to verify proper operation of the chip */

DSP 0Xcccce

swap_in RS /* swap 2448 2448 into the scan path */
for(i=1; @i<33; ++i) { /* scan out the value 2448 2448
with the CLOCK signal operating */
ck /* cycle the CLOCK2 signal */

)

sn LOAD 1

ck 2 /* reload data latch of testability latches */

swap_in RS /* reload the scan path with the same

values as above */

for(i=1; @i<33; ++1i) { /* scan values out with system
clock off to validate the ability to operate the DFT
scan path feature with no system clock functioning
as might be done for in-site testing */
ck
)

untraceobj

)
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APPENDIX C. TIMING ANALYSIS REPORTS

This Appendix provides the timing analysis reports
generated for the global system and local scan path clock
signals in the DFT_CHIP design. A Clock, Setup and Hold and
Violations report was generated for each of these two clock
signals. This information was used to verify that the
DFT_CHIP design did not have any timing relationship conflicts
and also to determine an anticipated maximum operating speed

for both the global system and local scan path clock signals.
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Genesil Version v7.1 =-- Thu Jun 7 15:55:45 1990
Chip: “genpooler/pooler/DFT_CHIP
Timing Analyzer

hhkhkhkkhkhkkhkkkhkhkhkhkhkkhkhkkkhkkhkhkhkhkhkkkkhkhkhhkkhkhkkhkkhkhkkkkkhkkhkkhkhkkhkkkhhkk
CLOCK REPORT MODE
Fabline: VTI_CN20A Corner: GUARANTEED

Junction Temperature:75 deg C Voltage:5.00v

External Clock: CLOCK

Included setup files:

#0 CLOCK_defaults (CLOCK 5V 75 degree Cent results)
CLOCK TIMES (minimum)
Phase 1 High: 113.0 ns Phase 2 High: 40.0 ns
Cycle (from Phl): 36.2 ns Cycle (from Ph2): 146.9 ns

Minimum Cycle Time: 152.9 ns Symmetric Cycle Time: 225.9 ns

- — - —————— - - - ——— ———— - ———— — ———————————— —— ———— -

CLOCK WORST CASE PATHS
Minimum Phase 1 high time ais 113.0 ns set by:
** Clock delay: 7.2ns (120.1-113.0)

Node Cumulative Delay Transition
dataout 4]/ (internal) 120.1 rise
dataout[4]/DOUT 113.2 fall
output/cout{4] 113.1 fall
output/cout([4]"' 109.9 fall
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output/out(4] 106.7 fall

adder/ocut(4] 106.7 fall
adder/out[4]"’ 106.5 fall
adder/c3 87.4 fall
adder/c3? 87.3 fall
adder/c2out[0] 63.5 fall
combiner2/c2out{0]"’ 63.5 fall
combiner2/c2out(0] 61.0 fall
combiner2/x13 57.1 fall
tlatch32/x13 57.1 fall
tlatch32/x13" 56.3 fall
tlatch32/t13 46.7 fall
combinerli/t13 46.7 fall
combinerl/t13" 44.9 fall
combinerl/t10 39.4 rise
combinerl/t10" 37.3 rise
combinerl/xout[7] 30.0 fall
xnorreg/xout[7] 30.0 fall
xnorreg/xout[7]" 28.5 fali
xnorreqg/x[7] 25.3 fall
xnorreg/rfout[7] 21.0 fall
ref_in/refl/rfout(7 21.0 fall
ref_in/refl/rfout(?7 19.1 fall
ref _in/refl/phase_a 10.2 rise
clock/phase_a 10.1 rise
CLOCK 0.0 rise
Minimum Phase 2 high time is 40.0 ns set by:

** Clock delay: 6.1ns (46.0-40.0)

Node Cumulative Delay Transition
maskin/maskl/ (internal) 46.0 rise
mask_in/maskl/mout[0] 41.1 fall
mask_in/maskl/mout([0]" 41.0 fall
mask_in/maskl/sp_con 35.4 fall
spcon/sp_con 35.1 fall
spcon/sp_con' 15.3 fall
spcon/phase_b 9.5 rise
clock/phase b 9.4 rise
CLOCK 0.0 fall

Minimum cycle time (from Phl) is 36.2 ns set by:

** Clock delay: 2.5ns (38.7-36.2)

Node Cumulative Delay Transition
mask_in/maskl/ (internal) 38.7 rise
mask_in/maskl/mout[7] 37.3 fall
mask_in/maskl/mout[7]" 37.3 fall
mask_in/maskl/sp_con 31.7 fall
spcon/sp_con 31.4 fall
spcon/sp_con' 11.5 fall
*spcon/ {internal) 7.3 rise
SPCON 0.0 fall
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Minimum cycle time (from Ph2) is 146.9 ns set by:

** Clock delay: 1l.1ns (148.0-146.9)

Node Cumulative Delay Transition
dataout[4]/ (internal) 148.0 rise
dataout[4]/DOUT 147.1 fall
output/cout[4] 147.1 fall
output/cout(4]"' 143.9 fall
output/out(4] 140.6 fall
adder/out{4] 140.6 fall
adder/out(4]" 140.5 fall
adder/c3 121.3 fall
adder/c3' 121.2 fall
adder/c2out{0] 97.5 fall
combiner2/c2out(0] 97.4 fall
combiner2/c2out[0]" 94.9 fall
combiner2/x13 91.0 fall
tlatch32/x13 91.0 fall
tlatch32/x13" 90.2 fall
tlatch32/t13 80.7 fall
combinerl/t13 80.7 fall
combinerl/t13" 78.8 fall
combinerl/t10 73.3 rise
combinerl/t10" 71.2 rise
combinerl/xout{7] 63.9 fall
xnorreg/xout[7] 63.9 fall
xnorreg/xout(71]" 62.4 fall
xnorreqg/x[7] 59.2 fall
xnorreg/rfout(7] 55.0 fall
ref _in/refl/rfout(7] 55.0 fall
ref in/refl/rfout(7]" 53.0 fall
*ref in/refl/(internal) 46.9 fall
ref in/refl/rout[7] 40.9 fall
ref _in/refl/rout(7}’ 40.9 fall
ref_in/refl/sp con 35.3 fall
spcon/sp_con 35.1 fall
spcon/sp_con'! 15.3 fall
spcon/phase_b 9.5 rise
clock/phase_b 9.4 rise
CLOCK 0.0 fall
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Genesil Version v7.1 -- Thu Jun 7 15:54:35 1990
Chip: “genpooler/pooler/DFT CHIP Timing Analyzer
kkkhkkhkhkkhkhkhkhkhkhkkhhkhkhhhkhkhkhkhkhkhkhkhkhkhkkhkhkhkkkrhkhkhkkkkhkhkhkkkhkkhkkkkkdk

SETUP AND HOLD MODE

Fabline: VTI_CN20A Corner: GUARANTEED
Junction Temperature:75 deg C Voltage:5.00v
External Clock: CLOCK

Included setup files:
#0 CLOCK _defaults (CLOCK 5V 75 degree Cent results)
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INPUT SETUP AND HOLD TIMES (ns)

Input Setup Time Hold Time
Phl(f)  Ph2(f) Phl(f) Ph2(f)

DATCON - 22.8 -—- 1.2 PATH
IN_PADS[O0] - 18.7 -—- 1.1 PATH
IN_PADS[10] —-——- 17.4 -—- 1.2 PATH
IN_PADS([11] - 17.3 - 1.2 PATH
IN_PADS([12] - 17.8 -— 1.2 PATH
IN_PADS[13] ——- 18.0 - 1.2 PATH
IN_PADS[14] _— 17.8 - 1.2 PATH
IN _PADS[15] -——- 17.6 - 1.2 PATH
IN_PADS[1] - 18.3 —-——- 1.1 PATH
IN_PADS[2] - 18.1 -—- 1.1 PATH
IN_PADS([3] -— 17.7 -— 1.1 PATH
IN_PADS[4] —-——- 17.2 - 1.2 PATH
IN_PADS[5] - 17.0 - 1.2 PATH
IN_PADS[6] —_— 16.8 -— 1.2 PATH
IN_PADS([7] - 16.8 -—- 1.2 PATH
IN_PADS([8] -— 17.9 -— 1.2 PATH
IN_PADS[9] -——- 18.0 —-—- 1.2 PATH
LOAD -——- 10.7 -——- 1.2 PATH
M1 -—- 3.9 -—- 1.2 PATH
M2 —— 3.9 - 1.2 PATH
MSKCON -——- 23.6 —-——- 1.2 PATH
QUTCON —-——- 3.9 - 1.2 PATH
REFCON - 22.5 - 1.2 PATH
SERIAL IN - 16.5 -—- 1.2 PATH
SPCON - 36.2 -——- 1.2 PATH
TESTIN ——- - ——= - PATH
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Genesil Version v7.1 =-- Thu Jun 7 15:56:35 1990
Chip: “genpooler/pooler/DFT_CHIP
Timing Analyzer
khkhkkkhkhkkhkkdkhkkhkhkkhkhkhkkhkhkkkhkhkhkhkkkkkhkhkkkhkhkkhkhkhkhkkkhkkhhkkhhkkkkkkkkk
VIOLATION MODE

Fabline: VTI_CN20A Corner: GUARANTEED
Junction Temperature:75 deg C Voltage:5.00v
External Clock: CLOCK

Included setup files:
#0 CLOCK defaults (CLOCK 5V 75 degree Cent results)
NO VIOLATIONS
Hold time check margin: 4.0ns

—— - —— - —— - ——— ———————— ——— - ————— ——— —— — ——— e —— ——n —— —— " ——— ——— —— ———
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Genesil Version v7.1 ~- Thu Jun 7 17:31:18 1990
Chip: “genpooler/pooler/DFT_CHIP
Timing Analyzer
khkdkhkhkkhkhkkhkkkhkhkhkkkkhkhkkhkhkhkhkhkhkhkhhkkhhkkhkhkkhkhkhkkhkhkhkhkhhhrhkhkhkkhkhkhkkhkhkk
CLOCK REPORT MODE
Fabline: VTI_CN20A Corner: GUARANTEED
Junction Temperature:75 deg C Voltage:5.00v
External Clock: CLOCK2
Included setup files:

#0 CLOCK2 defaults (CLOCK2 5V 75 degree Cent results)
CLOCK TIMES (minimum)
Phase 1 High: 17.5 ns Phase 2 High: 6.6 ns
Cycle (from Phl): 25.8 ns Cycle (from Ph2): 24.7 ns

Minimum Cycle Time: 25.8 ns Symmetric Cycle Time: 35.0 ns

- ———— . —— . ——— " - ——_———— - - — — o —— ———————— ————— Y - — ———— — —— ——————————

CLOCK WORST CASE PATHS

Minimum Phase 1 high time is 17.5 ns set by:
** Clock delay: 9.2ns (26.7-17.5)
Node Cumulative Delay Transition
tlatch32/(internal) 26.7 fall
tlatch32/x12 24.2 fall
tlatch32/x12" 23.4 fall
tlatch32/phase_ta 8.7 rise
clock2/phase_ta 8.7 rise
CLOCK2 0.0 rise
Minimum Phase 2 high time is 6.6 ns set by:
** Clock delay: 8.7ns (15.4-6.6)
Node Cumulative Delay Transition
tlatch32/(internal) 15.4 fall
tlatch32/phase_tb 7.7 rise
clock2/phase_tb 7.7 rise
CLOCK2 0.0 fall
Minimum cycle time (from Phl) is 25.8 ns set by:
** Clock delay: 8.7ns (34.5-25.8)
Node Cumulative Delay Transition
tout/ (internal) 34.5 fall
tout/testout 34.1 rise
tlatch32/testou 34.0 rise
tlatch32/testou 32.6 rise
*tlatch32/(intenal) 27.6 fall
tlatch32/x14 22.0 rise
tlatch32/x14"' 21.8 rise
tlatch32/phase_ta 8.7 rise
clock2/phase_ta 8.7 rise
CLOCK?2 0.0 rise
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Minimum cycle time (from Ph2) is
** Clock delay: 6.7ns (31.4-24.7)

Node
tlatch32/x14

tlatch32/x14"'
*tlatch32/(internal)

tlatch32/testout
tlatch32/testout’

tlatch32/phase_tb

clock2/phase_tb

CLOCK2

Cumulativ
31.4

24.7 ns set by:

e Delay

fall
fall
rise
fall
fall
rise
rise
fall

Transition

e o —— - ——— — ——— —— . T —————————_——— —————————————— — ——————

hkhkhkAkkhkkkkhkdkhkhkhkhkhkhkhkkhdhdbdkdkddkddhddhhhkhhhxhhkhdkhddhrhridhrkrdddkd

Genesil Version v7.1 -- Thu Jun
“genpooler/pooler/DFT_CHIP

Chip:

Timing Analyzer
hkhkhhkhkkkhkkhkhkhkhkkhkkhkkhdkkkhkkhkkkkdkhkdhkhkhdhbdhkrkhdhhkbhkhkhdhbhbhdhdhhhdhd

SETUP AND HOLD MODE

Fabline: VTI_CN20A
Junction Temperature:75 deg C

External Clock: CLOCK2
Included setup files:
#0 CLOCK2_defaults

Input

DATCON
IN_PADS[0)
IN_ PADS[10]
IN _PADS[11]
IN_PADS[12]
IN_PADS[13]
IN PADS[14]
IN _PADS[15]
IN_PADS[1]
IN_PADS([2]
IN_PADS[3]
IN_PADS[4]
IN _PADS[5)
IN _PADS[6]
IN_PADS(7)
IN_PADS[8]
IN_PADS([9]
LOAD

M1

M2

MSKCON
OUTCON
REFCON

Phl (f)

Corner:

7 17:30:24 1990

Voltage:5.00v

GUARANTEED

(CLOCK2 5V 75 degree Cent results)

- — . ———————— — ——— — - ——— . -——— - —— - —————— —————— - —— - ——

INPUT SETUP AND HOLD TIMES (ns)
Setup Time

Ph2 (f)

Hold Time
Phl(f)

Ph2 (f)

PATH
PATH
PATH
PATH
PATH
PATH
PATH
PATH
PATH
PATH
PATH
PATH
PATH
PATH
PATH
PATH
PATH
PATH
PATH
PATH
PATH
PATH
PATH




SERIAL_IN - - i - PATH
SPCON —-—— - - - PATH
TESTIN —-——- 5.0 - 0.1 PATH

hhkhhkhhhhkhhkhkhkhhkhhkhkhkhhkhkhhkxAkkdhkhkkAxkdddhhrhkhkdhkdkh Ak dhhkkddhkhhhx

Genesil Version v7.1 -- Thu Jun 7 17:32:26 1990
Chip: “genpooler/pooler/DFT CHIP
Timing Analyzer
kkkhkkkhkkhkhhkhkhhkhkkkhkkhkhhkkhkhkhkkhkhkhhkdkhkkkhkhkkhkhkhkhkkkkkhkkkhkkhkkkikkkkkk
VIOLATION MODE

v ————————— - —— ——— ——— - —————— T —— - — ——— " — ——— ——— ———————— ———

Fabline: VTI_CN20A Corner: GUARANTEED
Junction Temperature:75 deg C Voltage:5.00v
External Clock: CLOCK2

Included setup files:
#0 CLOCK2_defaults (CLOCK2 5V 75 degree Cent results)
NO VIOLATIONS
Hold time check margin: 4.0ns

- ——— ——————————— —— ——— - —————————— Y ————— — —— T —————————— T —
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APPENDIX D. TEST VECTOR CONVERSION PROGRAM

This Appendix provides the C source code for the
conversion program used to translate Genesil MASM formatted
test vector files to the ".das" and ".sim" file formats used
by the DVSS50 software. The conversion program also
interactively produces a ".src" file for use with the DVS50
software if the conversion program user indicates that this

needs to be done.

/***********************************************************

convert.c - conversion program to take the Genesil ATG or
SIMULATOR produced MASM test vector results from
.SMO file format and translate it to the .DAS
and .SIM formats used by the DVS50 software
during testing on the DAS 9100 tester.
Additionally, a .SRC file for use by the DVS50
software is produced interactively if desired

by the conversion program user.
***********************************************************/

#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <stdlib.h>
#define MAXLEN 50 /* max length of signal names or test
vectors allowed #*/

#define MALLOC(X) ((x *) malloc(sizeof(x)%%

11

#define ISWHITE(x) (x==' ') || (x=='\n"') (x=='\t") ||
(x=='\r')
FILE *fpl,*fp2,*fp3; /* file pointers */
char buffer [MAXLEN+1]:; /* spot to store word/testvestors
strings */
char spaces[MAXLEN+1]; /* holds spaces */
int count; /* loop counter */

main(argc,argv)
int argc;
char **argv;

150




{
char temp[MAXLEN + 1]; /* used during string manipulations

where more than one copy of the
buffer information is needed */
char src_filename[MAXLEN + 1]; /* holds prefix for
filename of .src file */
int undet_count = 0; /* used to keep track of number of
testvectors which have undetermined
output values during the initialization
process for the chip */
int undet_line = 0; /* line number of last line with
undetermined outputs*/

int vec_count = 0; /* total number of testvector lines */

int pin_count_das = 0; /* counts number of input pins on
chip for das file */

int pin_count_sim = 0; /* counts number of total pins on

chip for sim file */
long int das_count,sim_count; /* pointers to location where
pin counts are going to be
placed in the das and sim
files*/
int loops /* Keeps track of number of multiple signals
written during calls to the print_to_file
function */

if (argc == 1) /* case of no arguements given for
execution*/
{
print_instructions(); /* print instructions and then
exit program */
exit(0);
}
else if (argc == 2) /* only a testvector file given as an
arguement */
{
if ((fpl=fopen(argv[l],"r")) == NULL)

printf ("Testvector file not found!");
strcat ((strncpy(buffer,argv(1l],
strcspn(argv(1],"."))),'\0");
/* obtain the prefix charcters for argv[l] and put
in buffer */
strcpy(src_filename,buffer); /* copy filename prefix*/
fp2=fopen(strcat(strcpy(temp,buffer),".das"),"w");
/* open a file whose name is (argv([1l] prefix).das */
fp3=fopen(strcat(strcpy(temp,buffer),".sim"), "w+");
/* open a file whose name is (argv[1l] prefix).sim */
fprintf (fp2,"%s\n1\nl\n",buffer); /* print das file
prefix and two 1's on seperate lines in newly opened

file */

fprintf (fp3,"%s\nl\nl\n",buffer); /#* print sim file
prefix and two 1's on seperate lines in newly opened
file */

151




else if (argc == 3 ) /* both testvector file and output

filename given as arguements for program
execution */

{

if ((fpl=fopen(argv[1l],"r")) == NULL)

printf("Testvector file not found!"):
strcpy(buffer,argv(2]); /*set buffer=filename prefix
for .DAS output filex*/
strcpy(src_filename,buffer); /* copy filename prefix*/

fp2=fopen(strcat (buffer,".das"),"w"); /* open a file
whose name is argv([2]).das */
strcpy (buffer,argv(2]): /*set buffer=filename prefix

for .SIM output filex/
fp3=fopen(strcat(buffer,".sim"),"w+"); /* open a file
whose name is argv[2].sim */
fprintf(fp2,"%s\nl\nl\n",argv([2]); /* print das file
prefix and two 1's on seperate lines in newly opened
file */
fprintf(£fp3,"%s\nl\nl\n",argv([2]): /* print sim file
prefix and two 1's on seperate lines in newly opened
file */
}
for (count=0; count < MAXLEN; count++)
strcat (spaces," "); /* fill spaces string with all
spaces */
das_count = ftell(fp2); /* get pointer to location of das
file pin count */
fprintf (fp2,"000\n") ; /* temp value for number of input
pins for das file */
sim_count = ftell(fp3); /* get pointer to location of sim
file pin count */

fprintf (£fp3,"000\n") ; /* temp velue for number of total
pins for sim file */
while (strcmp(buffer,"INPUTS") != 0) /* loop until after

the keyword INPUTS is encountered in the test